4,594 research outputs found

    Risks and remedies in e-learning system

    Full text link
    One of the most effective applications of Information and Communication Technology (ICT) is the emergence of E-Learning. Considering the importance and need of E-Learning, recent years have seen a drastic change of learning methodologies in Higher Education. Undoubtedly, the three main entities of E-Learning system can be considered as Student, Teacher & Controlling Authority and there will be different level, but a good E-Learning system needs total integrity among all entities in every level. Apart from integrity enforcement, security enforcement in the whole system is the other crucial way to organize the it. As internet is the backbone of the entire system which is inherently insecure, during transaction of message in E-Learning system, hackers attack by utilising different loopholes of technology. So different security measures are required to be imposed on the system. In this paper, emphasis is given on different risks called e-risks and their remedies called e-remedies to build trust in the minds of all participants of E-Learning system

    Integrating emerging cryptographic engineering research and security education

    Get PDF
    Unlike traditional embedded systems such as secure smart cards, emerging secure deeply embedded systems, e.g., implantable and wearable medical devices, have larger “attack surface”. A security breach in such systems which are embedded deeply in human bodies or objects would be life-threatening, for which adopting traditional solutions might not be practical due to tight constraints of these often-battery-powered systems. Unfortunately, although emerging cryptographic engineering research mechanisms have started solving this critical problem, university education (at both graduate and undergraduate level) lags comparably. One of the pivotal reasons for such a lag is the multi-disciplinary nature of the emerging security bottlenecks (mathematics, engineering, science, and medicine, to name a few). Based on the aforementioned motivation, in this paper, we present an effective research and education integration strategy to overcome this issue at Rochester Institute of Technology. Moreover, we present the results of more than one year implementation of the presented strategy at graduate level through “side-channel analysis attacks” case studies. The results of the presented work show the success of the presented methodology while pinpointing the challenges encountered compared to traditional embedded system security research/teaching integration

    Multidisciplinary Approaches and Challenges in Integrating Emerging Medical Devices Security Research and Education

    Get PDF
    Traditional embedded systems such as secure smart cards and nano-sensor networks have been utilized in various usage models. Nevertheless, emerging secure deeply-embedded systems, e.g., implantable and wearable medical devices, have comparably larger “attack surface”. Specifically, with respect to medical devices, a security breach can be life-threatening (for which adopting traditional solutions might not be practical due to tight constraints of these often-battery-powered systems), and unlike traditional embedded systems, it is not only a matter of financial loss. Unfortunately, although emerging cryptographic engineering research mechanisms for such deeply-embedded systems have started solving this critical, vital problem, university education (at both graduate and undergraduate level) lags comparably. One of the pivotal reasons for such a lag is the multi-disciplinary nature of the emerging security bottlenecks. Based on the aforementioned motivation, in this work, at Rochester Institute of Technology, we present an effective research and education integration strategy to overcome this issue in one of the most critical deeply-embedded systems, i.e., medical devices. Moreover, we present the results of two years of implementation of the presented strategy at graduate-level through fault analysis attacks, a variant of side-channel attacks. We note that the authors also supervise an undergraduate student and the outcome of the presented work has been assessed for that student as well; however, the emphasis is on graduate-level integration. The results of the presented work show the success of the presented methodology while pinpointing the challenges encountered compared to traditional embedded system security research/teaching integration of medical devices security. We would like to emphasize that our integration approaches are general and scalable to other critical infrastructures as well

    Experiences and lessons learned in the design and implementation of an Information Assurance curriculum

    Get PDF
    In 2004, Dakota State University proposed a model for information assurance and computer security program development. That model provided a framework for developing undergraduate and graduate programs at DSU. This paper provides insight into experiences and lessons learned to further implement that model. The paper details modifications to both the undergraduate and graduate information assurance programs as a result of specific issues and challenges. Further, the paper highlights the introduction of a new terminal degree that includes an information assurance specialization. As a national center of excellence in information assurance education, we are confident that this paper will be helpful to universities around the world in either developing new or improving existing IA programs

    Education and Research Integration of Emerging Multidisciplinary Medical Devices Security

    Get PDF
    Traditional embedded systems such as secure smart cards and nano-sensor networks have been utilized in various usage models. Nevertheless, emerging secure deeply-embedded systems, e.g., implantable and wearable medical devices, have comparably larger “attack surface”. Specifically, with respect to medical devices, a security breach can be life-threatening (for which adopting traditional solutions might not be practical due to tight constraints of these often-battery-powered systems), and unlike traditional embedded systems, it is not only a matter of financial loss. Unfortunately, although emerging cryptographic engineering research mechanisms for such deeply-embedded systems have started solving this critical, vital problem, university education (at both graduate and undergraduate level) lags comparably. One of the pivotal reasons for such a lag is the multi-disciplinary nature of the emerging security bottlenecks. Based on the aforementioned motivation, in this work, at Rochester Institute of Technology, we present an effective research and education integration strategy to overcome this issue in one of the most critical deeply-embedded systems, i.e., medical devices. Moreover, we present the results of two years of implementation of the presented strategy at graduate-level through fault analysis attacks, a variant of side-channel attacks. We note that the authors also supervise an undergraduate student and the outcome of the presented work has been assessed for that student as well; however, the emphasis is on graduate-level integration. The results of the presented work show the success of the presented methodology while pinpointing the challenges encountered compared to traditional embedded system security research/teaching integration of medical devices security. We would like to emphasize that our integration approaches are general and scalable to other critical infrastructures as well

    Graduate News

    Get PDF
    May 2018 issue of Graduate News from the ODU Graduate School.https://digitalcommons.odu.edu/graduateschool_news/1040/thumbnail.jp

    Quantum Computing and IS - Harnessing the Opportunities of Emerging Technologies

    Get PDF
    Emerging technologies have high potential for impact and are worthy of attention by the Information Systems (IS) community. To date, IS has not been able to lead the research and teaching of emerging technologies in their early stages, arguably because: (1) IS researchers often lack knowledge of the foundational principles of such emerging technologies, and (2) during the emerging phase, there is insufficient data on adoption, use, and impact of these technologies. To overcome these challenges, the IS discipline must be willing to break its own disciplinary research boundaries to go beyond software applications and their related management issues and start studying emerging technologies before they are massively adopted by industry. In this paper, we use quantum computing as an exemplar emerging technology and outline a research and education agenda for IS to harness its opportunities. We propose that IS researchers may conduct rigorous research in emergent technologies through collaboration with researchers from other disciplines. We also see a role for IS researchers in the scholarship of emerging technologies that is of introducing emerging technology in IS curricula

    A comparative study of teaching forensics at a university degree level

    Get PDF
    Computer forensics is a relatively young University discipline which has developed strongly in the United States and the United Kingdom but is still in its infancy in continental Europe. The national programmes and courses offered therefore differ in many ways. We report on two recently established degree programmes from two European countries: Great Britain and Germany. We present and compare the design of both programmes and conclude that they cover two complementary and orthogonal aspects of computer forensics education: (a) rigorous practical skills and (b) competence for fundamental research discoveries
    • …
    corecore