475,764 research outputs found

    Design of experiments for non-manufacturing processes : benefits, challenges and some examples

    Get PDF
    Design of Experiments (DoE) is a powerful technique for process optimization that has been widely deployed in almost all types of manufacturing processes and is used extensively in product and process design and development. There have not been as many efforts to apply powerful quality improvement techniques such as DoE to improve non-manufacturing processes. Factor levels often involve changing the way people work and so have to be handled carefully. It is even more important to get everyone working as a team. This paper explores the benefits and challenges in the application of DoE in non-manufacturing contexts. The viewpoints regarding the benefits and challenges of DoE in the non-manufacturing arena are gathered from a number of leading academics and practitioners in the field. The paper also makes an attempt to demystify the fact that DoE is not just applicable to manufacturing industries; rather it is equally applicable to non-manufacturing processes within manufacturing companies. The last part of the paper illustrates some case examples showing the power of the technique in non-manufacturing environments

    Making, Emotion and the drive to re-shore UK garment manufacturing

    Full text link
    Research suggests that the act of making with one’s hands may be linked to emotional wellbeing. Yet fashion businesses seeking to return production to the UK are struggling to recruit the necessary skilled manufacturing workers. Given the estimated cost of depression to the UK economy and the sustainability benefits of returning local production it seems that there is potential for massive social benefit could such a workforce be mobilized. This position paper proposes novel design challenges and research questions for further exploration. Application of design methods and critical or speculative design to these challenges could help to raise social awareness of garment manufacture and increase the emotional wellbeing of manufacturing workers, while maintaining rates of production which would make re-shoring (returning to on-shore manufacturing in the UK) economically viable

    Energy-efficient through-life smart design, manufacturing and operation of ships in an industry 4.0 environment

    Get PDF
    Energy efficiency is an important factor in the marine industry to help reduce manufacturing and operational costs as well as the impact on the environment. In the face of global competition and cost-effectiveness, ship builders and operators today require a major overhaul in the entire ship design, manufacturing and operation process to achieve these goals. This paper highlights smart design, manufacturing and operation as the way forward in an industry 4.0 (i4) era from designing for better energy efficiency to more intelligent ships and smart operation through-life. The paper (i) draws parallels between ship design, manufacturing and operation processes, (ii) identifies key challenges facing such a temporal (lifecycle) as opposed to spatial (mass) products, (iii) proposes a closed-loop ship lifecycle framework and (iv) outlines potential future directions in smart design, manufacturing and operation of ships in an industry 4.0 value chain so as to achieve more energy-efficient vessels. Through computational intelligence and cyber-physical integration, we envision that industry 4.0 can revolutionise ship design, manufacturing and operations in a smart product through-life process in the near future

    Redesign optimization for manufacturing using additive layer techniques

    Get PDF
    Improvements in additive manufacturing technologies have the potential to greatly provide value to designers that could also contribute towards improving the sustainability levels of products as well as the production of lightweight products. With these improvements, it is possible to eliminate the design restrictions previously faced by manufacturers. This study examines the principles of additive manufacturing, design guidelines, capabilities of the manufacturing processes and structural optimisation using topology optimisation. Furthermore, a redesign methodology is proposed and illustrated through a redesign case study of an existing bracket. The optimal design is selected using multi-criteria decision analysis method. The challenges for using additive manufacturing technologies are discussed

    Semiconductor manufacturing simulation design and analysis with limited data

    Full text link
    This paper discusses simulation design and analysis for Silicon Carbide (SiC) manufacturing operations management at New York Power Electronics Manufacturing Consortium (PEMC) facility. Prior work has addressed the development of manufacturing system simulation as the decision support to solve the strategic equipment portfolio selection problem for the SiC fab design [1]. As we move into the phase of collecting data from the equipment purchased for the PEMC facility, we discuss how to redesign our manufacturing simulations and analyze their outputs to overcome the challenges that naturally arise in the presence of limited fab data. We conclude with insights on how an approach aimed to reflect learning from data can enable our discrete-event stochastic simulation to accurately estimate the performance measures for SiC manufacturing at the PEMC facility

    Linking design and manufacturing domains via web-based and enterprise integration technologies

    Get PDF
    The manufacturing industry faces many challenges such as reducing time-to-market and cutting costs. In order to meet these increasing demands, effective methods are need to support the early product development stages by bridging the gap of communicating early design ideas and the evaluation of manufacturing performance. This paper introduces methods of linking design and manufacturing domains using disparate technologies. The combined technologies include knowledge management supporting for product lifecycle management (PLM) systems, enterprise resource planning (ERP) systems, aggregate process planning systems, workflow management and data exchange formats. A case study has been used to demonstrate the use of these technologies, illustrated by adding manufacturing knowledge to generate alternative early process plan which are in turn used by an ERP system to obtain and optimise a rough-cut capacity plan

    Extending the product portfolio with ‘devolved manufacturing’: Methodology and case studies

    Get PDF
    Current research by the developers of rapid prototyping systems is generally focused on improvements in cost, speed and materials to create truly economic and practical economic rapid manufacturing machines. In addition to being potentially smarter/faster/cheaper replacements for existing manufacturing technologies, the next generation of these machines will provide opportunities not only for the design and fabrication of products without traditional constraints, but also for organizing manufacturing activities in new, innovative and previously undreamt of ways. This paper outlines a novel devolved manufacturing (DM) ‘factory-less’ approach to e-manufacturing, which integrates Mass Customization (MC) concepts, Rapid Manufacturing (RM) technologies and the communication opportunities of the Internet/WWW, describes two case studies of different DM implementations and discusses the limitations and appropriateness of each, and finally, draws some conclusions about the technical, manufacturing and business challenges involved

    Modular switched reluctance machines to be used in automotive applications

    Get PDF
    In the last decades industry, including also that of electrical machines and drives, was pushed near to its limits by the high market demands and fierce competition. As a response to the demanding challenges, improvements were made both in the design and manufacturing of electrical machines and drives. One of the introduced advanced technological solutions was the modular construction. This approach enables on a hand easier and higher productivity manufacturing, and on the other hand fast repairing in exploitation. Switched reluctance machines (SRMs) are very well fitted for modular construction, since the magnetic insulation of the phases is a basic design requirement. The paper is a survey of the main achievements in the field of modular electrical machines, (especially SRMs), setting the focus on the machines designed to be used in automotive applications

    Lessons learned for composite structures

    Get PDF
    Lessons learned for composite structures are presented in three technology areas: materials, manufacturing, and design. In addition, future challenges for composite structures are presented. Composite materials have long gestation periods from the developmental stage to fully matured production status. Many examples exist of unsuccessful attempts to accelerate this gestation period. Experience has shown that technology transition of a new material system to fully matured production status is time consuming, involves risk, is expensive and should not be undertaken lightly. The future challenges for composite materials require an intensification of the science based approach to material development, extension of the vendor/customer interaction process to include all engineering disciplines of the end user, reduced material costs because they are a significant factor in overall part cost, and improved batch-to-batch pre-preg physical property control. Historical manufacturing lessons learned are presented using current in-service production structure as examples. Most producibility problems for these structures can be traced to their sequential engineering design. This caused an excessive emphasis on design-to-weight and schedule at the expense of design-to-cost. This resulted in expensive performance originated designs, which required costly tooling and led to non-producible parts. Historically these problems have been allowed to persist throughout the production run. The current/future approach for the production of affordable composite structures mandates concurrent engineering design where equal emphasis is placed on product and process design. Design for simplified assembly is also emphasized, since assembly costs account for a major portion of total airframe costs. The future challenge for composite manufacturing is, therefore, to utilize concurrent engineering in conjunction with automated manufacturing techniques to build affordable composite structures. Composite design experience has shown that significant weight savings have been achieved, outstanding fatigue and corrosion resistance have been demonstrated, and in-service performance has been very successful. Currently no structural design show stoppers exist for composite structures. A major lesson learned is that the full scale static test is the key test for composites, since it is the primary structural 'hot spot' indicator. The major durability issue is supportability of thin skinned structure. Impact damage has been identified as the most significant issue for the damage tolerance control of composite structures. However, delaminations induced during assembly operations have demonstrated a significant nuisance value. The future challenges for composite structures are threefold. Firstly, composite airframe weight fraction should increase to 60 percent. At the same time, the cost of composite structures must be reduced by 50 percent to attain the goal of affordability. To support these challenges it is essential to develop lower cost materials and processes
    • …
    corecore