214,750 research outputs found

    Challenges in Integrating Biological Data Sources

    Get PDF
    this report, we examine the technical challenges to integration, critique the available tools and resources, and compare the cost and advantages of various methodologies. We begin by analyzing the basic steps in strict and complete integration: 1) transformation of the various schemas to a common data model; 2) matching of semantically related schema objects; 3) schema integration; 4) transformation of data to the federated database on demand; and 5) matching of semantically equivalent data. Some progress has been made on generic problems such as (1) and (3) within the wider database community, but issues of semantics (steps (2) and (5)) have only been dealt with any degree of success by domain experts within the biological community. We then look at the solution space of integration strategies as defined by two axes, the "tightness" of federation and the "degree" of instantiation, discuss where various solutions fall on this plane, and examine their cost and advantages/disadvantages. Finally, we examine technical challenges that are not -3- July 12, 199

    The landscape of the methodology in drug repurposing using human genomic data:a systematic review

    Get PDF
    The process of drug development is expensive and time-consuming. In contrast, drug repurposing can be introduced to clinical practice more quickly and at a reduced cost. Over the last decade, there has been a significant expansion of large biobanks that link genomic data to electronic health record (EHR) data, public availability of various databases containing biological and clinical information, and rapid development of novel methodologies and algorithms in integrating different sources of data. This review aims to provide a thorough summary of different strategies that utilize genomic data to seek drug-repositioning opportunities. We searched MEDLINE and EMBASE databases to identify eligible studies up until 1st May 2023, with a total of 102 studies finally included after two-step parallel screening. We summarized commonly used strategies for drug repurposing, including Mendelian randomization, multi-omic-based and network-based studies, and illustrated each strategy with examples, as well as the data sources implemented. By leveraging existing knowledge and infrastructure to expedite the drug discovery process and reduce costs, drug repurposing potentially identifies new therapeutic uses for approved drugs in a more efficient and targeted manner. However, technical challenges when integrating different types of data and biased or incomplete understanding of drug interactions are important hindrances that cannot be disregarded in the pursuit of identifying novel therapeutic applications. This review offers an overview of drug repurposing methodologies, providing valuable insights and guiding future directions for advancing drug repurposing studies

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Heterogeneous biomedical database integration using a hybrid strategy: a p53 cancer research database.

    Get PDF
    Complex problems in life science research give rise to multidisciplinary collaboration, and hence, to the need for heterogeneous database integration. The tumor suppressor p53 is mutated in close to 50% of human cancers, and a small drug-like molecule with the ability to restore native function to cancerous p53 mutants is a long-held medical goal of cancer treatment. The Cancer Research DataBase (CRDB) was designed in support of a project to find such small molecules. As a cancer informatics project, the CRDB involved small molecule data, computational docking results, functional assays, and protein structure data. As an example of the hybrid strategy for data integration, it combined the mediation and data warehousing approaches. This paper uses the CRDB to illustrate the hybrid strategy as a viable approach to heterogeneous data integration in biomedicine, and provides a design method for those considering similar systems. More efficient data sharing implies increased productivity, and, hopefully, improved chances of success in cancer research. (Code and database schemas are freely downloadable, http://www.igb.uci.edu/research/research.html.)

    Graph-based queries of Semantic Web integrated biological data

    Get PDF
    42011 MORE 1openIn the post-genomic era, life science researchers are faced with the need to manage and inspect a growing abundance of data and information. Data from different sources, both public and proprietary, have the most value when considered in the context of each other as they give more information. In order to answer questions that spans multiple fields in the biology domain without an integrated approach, a biologist needs to visit all data sources related to the problem and find relevant data. In the last years we have become witnesses of a growing interest for the Semantic Web technologies to integrate and query biological data. Semantic Web technologies were designed to meet the challenges of reduce the complexity of combining data from multiple sources, resolve the lack of widely accepted standards and manage highly distributed and mutable resources. However, Semantic Web standard technologies do not provide any tools to query integrated knowledge bases from a graph perspective, that is defining graph traversal patterns. For example, it is not possible to ask a query like "are enzyme A and compound B related?" without knowing the complete structure of the knowledge base. After exploring different alternatives we come up with the use of a graph traversal programming language on top of a triplestore in order to perform several path traversal queries on an integrated graph. We tested the feasibility of the approach integrating Uniprot, Gene Ontology, Chebi and Kegg resources posing queries of different complexity.openMoretto M.; Cestaro A.; Blanzieri E.; Velasco R.Moretto, M.; Cestaro, A.; Blanzieri, E.; Velasco, R

    Toward A Universal Biomedical Data Translator.

    Get PDF
    corecore