4,619 research outputs found

    A Context-theoretic Framework for Compositionality in Distributional Semantics

    Full text link
    Techniques in which words are represented as vectors have proved useful in many applications in computational linguistics, however there is currently no general semantic formalism for representing meaning in terms of vectors. We present a framework for natural language semantics in which words, phrases and sentences are all represented as vectors, based on a theoretical analysis which assumes that meaning is determined by context. In the theoretical analysis, we define a corpus model as a mathematical abstraction of a text corpus. The meaning of a string of words is assumed to be a vector representing the contexts in which it occurs in the corpus model. Based on this assumption, we can show that the vector representations of words can be considered as elements of an algebra over a field. We note that in applications of vector spaces to representing meanings of words there is an underlying lattice structure; we interpret the partial ordering of the lattice as describing entailment between meanings. We also define the context-theoretic probability of a string, and, based on this and the lattice structure, a degree of entailment between strings. We relate the framework to existing methods of composing vector-based representations of meaning, and show that our approach generalises many of these, including vector addition, component-wise multiplication, and the tensor product.Comment: Submitted to Computational Linguistics on 20th January 2010 for revie

    Belief propagation in monoidal categories

    Full text link
    We discuss a categorical version of the celebrated belief propagation algorithm. This provides a way to prove that some algorithms which are known or suspected to be analogous, are actually identical when formulated generically. It also highlights the computational point of view in monoidal categories.Comment: In Proceedings QPL 2014, arXiv:1412.810

    Solving multivariate polynomial systems and an invariant from commutative algebra

    Get PDF
    The complexity of computing the solutions of a system of multivariate polynomial equations by means of Gr\"obner bases computations is upper bounded by a function of the solving degree. In this paper, we discuss how to rigorously estimate the solving degree of a system, focusing on systems arising within public-key cryptography. In particular, we show that it is upper bounded by, and often equal to, the Castelnuovo Mumford regularity of the ideal generated by the homogenization of the equations of the system, or by the equations themselves in case they are homogeneous. We discuss the underlying commutative algebra and clarify under which assumptions the commonly used results hold. In particular, we discuss the assumption of being in generic coordinates (often required for bounds obtained following this type of approach) and prove that systems that contain the field equations or their fake Weil descent are in generic coordinates. We also compare the notion of solving degree with that of degree of regularity, which is commonly used in the literature. We complement the paper with some examples of bounds obtained following the strategy that we describe
    corecore