29,432 research outputs found

    Geographically Referenced Data for Social Science

    Get PDF
    An estimated 80% of all information has a spatial reference. Information about households as well as environmental data can be linked to precise locations in the real world. This offers benefits for combining different datasets via the spatial location and, furthermore, spatial indicators such as distance and accessibility can be included in analyses and models. HSpatial patterns of real-world social phenomena can be identified and described and possible interrelationships between datasets can be studied. Michael F. GOODCHILD, a Professor of Geography at the University of California, Santa Barbara and principal investigator at the Center for Spatially Integrated Social Science (CSISS), summarizes the growing significance of space, spatiality, location, and place in social science research as follows: "(...) for many social scientists, location is just another attribute in a table and not a very important one at that. After all, the processes that lead to social deprivation, crime, or family dysfunction are more or less the same everywhere, and, in the minds of social scientists, many other variables, such as education, unemployment, or age, are far more interesting as explanatory factors of social phenomena than geographic location. Geographers have been almost alone among social scientists in their concern for space; to economists, sociologists, political scientists, demographers, and anthropologists, space has been a minor issue and one that these disciplines have often been happy to leave to geographers. But that situation is changing, and many social scientists have begun to talk about a "spatial turn," a new interest in location, and a new "spatial social science" that crosses the traditional boundaries between disciplines. Interest is rising in GIS (Geographic Information Systems) and in what GIS makes possible: mapping, spatial analysis, and spatial modelling. At the same time, new tools are becoming available that give GIS users access to some of the big ideas of social science."

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    A survey on Human Mobility and its applications

    Full text link
    Human Mobility has attracted attentions from different fields of studies such as epidemic modeling, traffic engineering, traffic prediction and urban planning. In this survey we review major characteristics of human mobility studies including from trajectory-based studies to studies using graph and network theory. In trajectory-based studies statistical measures such as jump length distribution and radius of gyration are analyzed in order to investigate how people move in their daily life, and if it is possible to model this individual movements and make prediction based on them. Using graph in mobility studies, helps to investigate the dynamic behavior of the system, such as diffusion and flow in the network and makes it easier to estimate how much one part of the network influences another by using metrics like centrality measures. We aim to study population flow in transportation networks using mobility data to derive models and patterns, and to develop new applications in predicting phenomena such as congestion. Human Mobility studies with the new generation of mobility data provided by cellular phone networks, arise new challenges such as data storing, data representation, data analysis and computation complexity. A comparative review of different data types used in current tools and applications of Human Mobility studies leads us to new approaches for dealing with mentioned challenges

    The role of earth observation in an integrated deprived area mapping “system” for low-to-middle income countries

    Get PDF
    Urbanization in the global South has been accompanied by the proliferation of vast informal and marginalized urban areas that lack access to essential services and infrastructure. UN-Habitat estimates that close to a billion people currently live in these deprived and informal urban settlements, generally grouped under the term of urban slums. Two major knowledge gaps undermine the efforts to monitor progress towards the corresponding sustainable development goal (i.e., SDG 11—Sustainable Cities and Communities). First, the data available for cities worldwide is patchy and insufficient to differentiate between the diversity of urban areas with respect to their access to essential services and their specific infrastructure needs. Second, existing approaches used to map deprived areas (i.e., aggregated household data, Earth observation (EO), and community-driven data collection) are mostly siloed, and, individually, they often lack transferability and scalability and fail to include the opinions of different interest groups. In particular, EO-based-deprived area mapping approaches are mostly top-down, with very little attention given to ground information and interaction with urban communities and stakeholders. Existing top-down methods should be complemented with bottom-up approaches to produce routinely updated, accurate, and timely deprived area maps. In this review, we first assess the strengths and limitations of existing deprived area mapping methods. We then propose an Integrated Deprived Area Mapping System (IDeAMapS) framework that leverages the strengths of EO- and community-based approaches. The proposed framework offers a way forward to map deprived areas globally, routinely, and with maximum accuracy to support SDG 11 monitoring and the needs of different interest groups
    corecore