312 research outputs found

    Submillimeter local oscillators for spaceborne heterodyne applications

    Get PDF
    Existing and prospective submillimeter local oscillator technologies are surveyed and compared with respect to criteria of suitability for application in spaceborne submillimeter heterodyne receivers as those proposed for the Large Deployable Reflector (LDR). Solid-state and plasma devices are considered in terms of fundamental limitations

    Comparative efficiency and power assessment of optical photoconductive material-based terahertz sources for wireless communication systems

    Get PDF
    Electronic version of an article published as [Journal of Circuits, Systems and Computers, vol. 28, num. 1, 2018] [https://doi.org/10.1142/S0218126619500051] © [copyright World Scientific Publishing Company] [https://www.worldscientific.com/worldscinet/jcsc]Terahertz band has recently attracted the attention of the communication society due to its huge bandwidth and very high-speed wireless communications capability. It has been utilized in a variety of disciplines including physics, biology and astronomy for years; and the main concerns have always been obtaining highly efficient and high-power terahertz sources. Today, these problems are still the most important issues in establishing an operable wireless terahertz communication link. In this paper, recent studies in the field of terahertz source design are investigated based on the terahertz output power and efficiency. Solid-state sources and optical sources were comparatively reviewed with optical photoconductive material (OPM)-based methods which are combined with the terahertz antennas in the design phase generally. For wireless communication, the most suitable frequencies are between 0.3THz and 1THz due to the attenuation profile of the atmosphere. For this reason, based on the recently published studies, it has been observed that OPM and resonant tunneling diode-based sources are the most promising terahertz sources in terms of efficiency and power. Key issues and the main problems of terahertz photoconductive antennas which are the base of OPM method were also discussed in this paper.Peer ReviewedPostprint (author's final draft

    Accurate quantum transport modelling and epitaxial structure design of high-speed and high-power In0.53Ga0.47As/AlAs double-barrier resonant tunnelling diodes for 300-GHz oscillator sources

    Get PDF
    Terahertz (THz) wave technology is envisioned as an appealing and conceivable solution in the context of several potential high-impact applications, including sixth generation (6G) and beyond consumer-oriented ultra-broadband multi-gigabit wireless data-links, as well as highresolution imaging, radar, and spectroscopy apparatuses employable in biomedicine, industrial processes, security/defence, and material science. Despite the technological challenges posed by the THz gap, recent scientific advancements suggest the practical viability of THz systems. However, the development of transmitters (Tx) and receivers (Rx) based on compact semiconductor devices operating at THz frequencies is urgently demanded to meet the performance requirements calling from emerging THz applications. Although several are the promising candidates, including high-speed III-V transistors and photo-diodes, resonant tunnelling diode (RTD) technology offers a compact and high performance option in many practical scenarios. However, the main weakness of the technology is currently represented by the low output power capability of RTD THz Tx, which is mainly caused by the underdeveloped and non-optimal device, as well as circuit, design implementation approaches. Indeed, indium phosphide (InP) RTD devices can nowadays deliver only up to around 1 mW of radio-frequency (RF) power at around 300 GHz. In the context of THz wireless data-links, this severely impacts the Tx performance, limiting communication distance and data transfer capabilities which, at the current time, are of the order of few tens of gigabit per second below around 1 m. However, recent research studies suggest that several milliwatt of output power are required to achieve bit-rate capabilities of several tens of gigabits per second and beyond, and to reach several metres of communication distance in common operating conditions. Currently, the shortterm target is set to 5−10 mW of output power at around 300 GHz carrier waves, which would allow bit-rates in excess of 100 Gb/s, as well as wireless communications well above 5 m distance, in first-stage short-range scenarios. In order to reach it, maximisation of the RTD highfrequency RF power capability is of utmost importance. Despite that, reliable epitaxial structure design approaches, as well as accurate physical-based numerical simulation tools, aimed at RF power maximisation in the 300 GHz-band are lacking at the current time. This work aims at proposing practical solutions to address the aforementioned issues. First, a physical-based simulation methodology was developed to accurately and reliably simulate the static current-voltage (IV ) characteristic of indium gallium arsenide/aluminium arsenide (In-GaAs/AlAs) double-barrier RTD devices. The approach relies on the non-equilibrium Green’s function (NEGF) formalism implemented in Silvaco Atlas technology computer-aided design (TCAD) simulation package, requires low computational budget, and allows to correctly model In0.53Ga0.47As/AlAs RTD devices, which are pseudomorphically-grown on lattice-matched to InP substrates, and are commonly employed in oscillators working at around 300 GHz. By selecting the appropriate physical models, and by retrieving the correct materials parameters, together with a suitable discretisation of the associated heterostructure spatial domain through finite-elements, it is shown, by comparing simulation data with experimental results, that the developed numerical approach can reliably compute several quantities of interest that characterise the DC IV curve negative differential resistance (NDR) region, including peak current, peak voltage, and voltage swing, all of which are key parameters in RTD oscillator design. The demonstrated simulation approach was then used to study the impact of epitaxial structure design parameters, including those characterising the double-barrier quantum well, as well as emitter and collector regions, on the electrical properties of the RTD device. In particular, a comprehensive simulation analysis was conducted, and the retrieved output trends discussed based on the heterostructure band diagram, transmission coefficient energy spectrum, charge distribution, and DC current-density voltage (JV) curve. General design guidelines aimed at enhancing the RTD device maximum RF power gain capability are then deduced and discussed. To validate the proposed epitaxial design approach, an In0.53Ga0.47As/AlAs double-barrier RTD epitaxial structure providing several milliwatt of RF power was designed by employing the developed simulation methodology, and experimentally-investigated through the microfabrication of RTD devices and subsequent high-frequency characterisation up to 110 GHz. The analysis, which included fabrication optimisation, reveals an expected RF power performance of up to around 5 mW and 10 mW at 300 GHz for 25 μm2 and 49 μm2-large RTD devices, respectively, which is up to five times higher compared to the current state-of-the-art. Finally, in order to prove the practical employability of the proposed RTDs in oscillator circuits realised employing low-cost photo-lithography, both coplanar waveguide and microstrip inductive stubs are designed through a full three-dimensional electromagnetic simulation analysis. In summary, this work makes and important contribution to the rapidly evolving field of THz RTD technology, and demonstrates the practical feasibility of 300-GHz high-power RTD devices realisation, which will underpin the future development of Tx systems capable of the power levels required in the forthcoming THz applications

    The Third International Symposium on Space Terahertz Technology: Symposium proceedings

    Get PDF
    Papers from the symposium are presented that are relevant to the generation, detection, and use of the terahertz spectral region for space astronomy and remote sensing of the Earth's upper atmosphere. The program included thirteen sessions covering a wide variety of topics including solid-state oscillators, power-combining techniques, mixers, harmonic multipliers, antennas and antenna arrays, submillimeter receivers, and measurement techniques

    A Fully-Integrated Quad-Band GSM/GPRS CMOS Power Amplifier

    Get PDF
    Concentric distributed active transformers (DAT) are used to implement a fully-integrated quad-band power amplifier (PA) in a standard 130 nm CMOS process. The DAT enables the power amplifier to integrate the input and output matching networks on the same silicon die. The PA integrates on-chip closed-loop power control and operates under supply voltages from 2.9 V to 5.5 V in a standard micro-lead-frame package. It shows no oscillations, degradation, or failures for over 2000 hours of operation with a supply of 6 V at 135° under a VSWR of 15:1 at all phase angles and has also been tested for more than 2 million device-hours (with ongoing reliability monitoring) without a single failure under nominal operation conditions. It produces up to +35 dBm of RF power with power-added efficiency of 51%

    2D materials based heterostructure for quantum tunneling: a lithography free technique.

    Get PDF
    Two-dimensional electron gas (2DEG) systems have played a vital role in the development of superior electronic devices including tunnel junctions consisting of two such 2DEG systems. With the advent of the new 2D electronic material systems, it has opened a new route for 2D–2D tunneling in such extended systems. In this study, we have utilized a plasma enhanced chemical vapor deposition (PECVD) technique to directly deposit graphene (nanowalls) and h-BN on Si/SiO2 substrates to construct two-dimensional material based, vertically stacked electron tunneling devices free of expensive and cumbersome microfabrication steps. In the first study, we fabricated direct quantum tunneling devices by depositing atomically thin tunnel barriers of h-BN as the tunneling barrier with equally doped (p-doped under ambient conditions) graphene nanowalls as the active electrode layers (top and bottom) on Si/SiO2 substrates. Current-voltage (I-V) measurements for varying h-BN thicknesses of these single barrier tunneling devices showed linear I-V characteristics at low bias but an exponential dependence at higher bias. Our measurements of the electron tunnel current through the barrier demonstrated that the h-BN films act as a good tunnel barrier. The barrier thickness dependent tunneling current was in good agreement with the tunnelling currents computed using the Bardeen transfer Hamiltonian approach with equally doped top and bottom graphene electrodes. Presence of negative differential resistance (NDR) is characteristic of the current–voltage relationship of a resonant tunneling device, enabling many unique applications. NDR arises at a voltage bias corresponding to aligned band structures of the 2D systems, causing a sharp peak in the tunnelling current. The existence of devices with NDR has been reported since the late 1950\u27s in devices that contained degenerately doped p-n junctions with thin oxide barriers (tunnel diodes) and double barrier heterojunction devices where quantum tunneling effects are utilized. The NDR in the I-V characteristics of these devices has been used in many applications involving microwave/millimeter wave oscillators, high speed logic devices and switches. We investigated NDR phenomenon in our graphene/h-BN systems in two different routes. In the first case, graphene/h-BN/graphene single barrier device, the bottom and top graphene layers were unequally doped. One of the graphene layers was n-type doped using ammonia or hydrazine. Nitrogen doping using ammonia was accomplished during the growth by incorporating ammonia in the PECVD system. Hydrazine doping was accomplished by exposing the graphene to hydrazine vapor in vacuum. The unequal doping of graphene causes alignment of the band structures of graphene systems giving rise to NDR. The tunnelling devices consisting of unequally doped graphene with a single barrier shows resonant quantum tunneling with the presence of a pronounced peak in the current corresponding to NDC whose peak current value and the voltage value depend on the doping levels. The results are explained according to the modified Bardeen tunneling model. Next, resonant tunneling behavior was demonstrated in Graphene/h-BN/Graphene/h-BN/Graphene double barrier (DB) devices by directly depositing graphene and h-BN successive layers on Si/SiO2 substrates using PECVD. DB Tunneling junctions with various barrier widths were investigated (by varying the thickness of the second graphene layer). The I-V parameters of tunneling current at room temperature demonstrated resonant tunneling with negative differential conductance. A quantum mechanical double barrier tunneling model was used to explain the phenomenon, by solving the Schrödinger\u27s equation in either side of the system. A systematic behavior of the current peak values and the corresponding voltage values in I-V curves were seen to be in good agreement with the transmission coefficient calculated using a quantum mechanical model. Josephson tunneling is a different kind of tunneling phenomenon in superconductors, in which superconducting cooper pairs tunnel across a thin insulating barrier. A supercurrent can flow between two superconductors that are separated by a narrow insulating barrier. The current is influenced by the phase difference between the two superconductors. We fabricated Josephson junctions with atomically thin tunnel barriers by combining h-BN with magnesium diboride (MgB2) active electrode layers on a Si/SiO2 substrate using a PECVD (for h-BN) and a Hybrid Physical-Chemical Vapor Deposition (HPCVD) (for Mg ). The I-V characteristics were measured above and below the transition temperature Tc (37 K). A measurable supercurrent was detected below Tc
    corecore