15,401 research outputs found

    The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework

    Full text link
    Computers continue to diversify with respect to system designs, emerging memory technologies, and application memory demands. Unfortunately, continually adapting the conventional virtual memory framework to each possible system configuration is challenging, and often results in performance loss or requires non-trivial workarounds. To address these challenges, we propose a new virtual memory framework, the Virtual Block Interface (VBI). We design VBI based on the key idea that delegating memory management duties to hardware can reduce the overheads and software complexity associated with virtual memory. VBI introduces a set of variable-sized virtual blocks (VBs) to applications. Each VB is a contiguous region of the globally-visible VBI address space, and an application can allocate each semantically meaningful unit of information (e.g., a data structure) in a separate VB. VBI decouples access protection from memory allocation and address translation. While the OS controls which programs have access to which VBs, dedicated hardware in the memory controller manages the physical memory allocation and address translation of the VBs. This approach enables several architectural optimizations to (1) efficiently and flexibly cater to different and increasingly diverse system configurations, and (2) eliminate key inefficiencies of conventional virtual memory. We demonstrate the benefits of VBI with two important use cases: (1) reducing the overheads of address translation (for both native execution and virtual machine environments), as VBI reduces the number of translation requests and associated memory accesses; and (2) two heterogeneous main memory architectures, where VBI increases the effectiveness of managing fast memory regions. For both cases, VBI significanttly improves performance over conventional virtual memory

    Survey: Benefits of integrating both wireless sensors networks and cloud computing infrastructure

    Get PDF
    Cloud computing has the capabilities of powerful processing and scalable storage with the ability of offline and online data analysis and mining of the collected sensed data from body areas networks. Cloud computing can be considered as the main enabler for modern manufacturing industries. Cloud computing can efficiently serve key areas of manufacturing by aspects of the pay-as-you-go business model, scaling up and down production according to certain demands, more customized solutions, and flexible deployments. In cloud manufacturing, the distributed sensors and resources can be managed in centralized architecture that allows cloud users to request more specific product design, testing at all the stages of the product. This study covers the main points of Integrating Both Wireless Sensors Networks and Cloud Computing Infrastructure and gives a view of the various advantage and disadvantages of methods in integration

    Enabling dynamic and intelligent workflows for HPC, data analytics, and AI convergence

    Get PDF
    The evolution of High-Performance Computing (HPC) platforms enables the design and execution of progressively larger and more complex workflow applications in these systems. The complexity comes not only from the number of elements that compose the workflows but also from the type of computations they perform. While traditional HPC workflows target simulations and modelling of physical phenomena, current needs require in addition data analytics (DA) and artificial intelligence (AI) tasks. However, the development of these workflows is hampered by the lack of proper programming models and environments that support the integration of HPC, DA, and AI, as well as the lack of tools to easily deploy and execute the workflows in HPC systems. To progress in this direction, this paper presents use cases where complex workflows are required and investigates the main issues to be addressed for the HPC/DA/AI convergence. Based on this study, the paper identifies the challenges of a new workflow platform to manage complex workflows. Finally, it proposes a development approach for such a workflow platform addressing these challenges in two directions: first, by defining a software stack that provides the functionalities to manage these complex workflows; and second, by proposing the HPC Workflow as a Service (HPCWaaS) paradigm, which leverages the software stack to facilitate the reusability of complex workflows in federated HPC infrastructures. Proposals presented in this work are subject to study and development as part of the EuroHPC eFlows4HPC project.This work has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland and Norway. In Spain, it has received complementary funding from MCIN/AEI/10.13039/501100011033, Spain and the European Union NextGenerationEU/PRTR (contracts PCI2021-121957, PCI2021-121931, PCI2021-121944, and PCI2021-121927). In Germany, it has received complementary funding from the German Federal Ministry of Education and Research (contracts 16HPC016K, 6GPC016K, 16HPC017 and 16HPC018). In France, it has received financial support from Caisse des dĂ©pĂŽts et consignations (CDC) under the action PIA ADEIP (project Calculateurs). In Italy, it has been preliminary approved for complimentary funding by Ministero dello Sviluppo Economico (MiSE) (ref. project prop. 2659). In Norway, it has received complementary funding from the Norwegian Research Council, Norway under project number 323825. In Switzerland, it has been preliminary approved for complimentary funding by the State Secretariat for Education, Research, and Innovation (SERI), Norway. In Poland, it is partially supported by the National Centre for Research and Development under decision DWM/EuroHPCJU/4/2021. The authors also acknowledge financial support by MCIN/AEI /10.13039/501100011033, Spain through the “Severo Ochoa Programme for Centres of Excellence in R&D” under Grant CEX2018-000797-S, the Spanish Government, Spain (contract PID2019-107255 GB) and by Generalitat de Catalunya, Spain (contract 2017-SGR-01414). Anna Queralt is a Serra HĂșnter Fellow.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2018-000797-S)
    • 

    corecore