2,951 research outputs found

    A Survey on UAV-Aided Maritime Communications: Deployment Considerations, Applications, and Future Challenges

    Full text link
    Maritime activities represent a major domain of economic growth with several emerging maritime Internet of Things use cases, such as smart ports, autonomous navigation, and ocean monitoring systems. The major enabler for this exciting ecosystem is the provision of broadband, low-delay, and reliable wireless coverage to the ever-increasing number of vessels, buoys, platforms, sensors, and actuators. Towards this end, the integration of unmanned aerial vehicles (UAVs) in maritime communications introduces an aerial dimension to wireless connectivity going above and beyond current deployments, which are mainly relying on shore-based base stations with limited coverage and satellite links with high latency. Considering the potential of UAV-aided wireless communications, this survey presents the state-of-the-art in UAV-aided maritime communications, which, in general, are based on both conventional optimization and machine-learning-aided approaches. More specifically, relevant UAV-based network architectures are discussed together with the role of their building blocks. Then, physical-layer, resource management, and cloud/edge computing and caching UAV-aided solutions in maritime environments are discussed and grouped based on their performance targets. Moreover, as UAVs are characterized by flexible deployment with high re-positioning capabilities, studies on UAV trajectory optimization for maritime applications are thoroughly discussed. In addition, aiming at shedding light on the current status of real-world deployments, experimental studies on UAV-aided maritime communications are presented and implementation details are given. Finally, several important open issues in the area of UAV-aided maritime communications are given, related to the integration of sixth generation (6G) advancements

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa

    Performance analysis of bio-signal processing in ocean environment using soft computing techniques

    Get PDF
    Wireless communication has become an essential technology in our day-to-day life both in air and water medium. To monitor the health parameter of human begins, advancement techniques like internet of things is evolved. But to analyze underwater living organisms health parameters, researchers finding difficulties to do so. The reason behind is underwater channels has drawbacks like signal degradation due to multipath propagation, severe ambient noise and Attenuation by bottom and surface loss. In this paper Artificial Neural Networks (ANN) is used to perform data transfer in water medium. A sample EEG signal is generated and trained with 2 and 20 hidden layers. Simulation result showed that error free communication is achieved with 20 hidden layers at 10th iteration. The proposed algorithm is validated using a real time watermark toolbox. Two different modulation scheme was applied along with ANN. In the first scenario, the EEG signal is modulated using convolution code and decoded by Viterbi Algorithm. Multiplexing technique is applied in the second scenario. It is observed that energy level in the order of 40 dB is required for least error rate. It is also evident from simulation result that maximum of 5% CP can be maintained to attain the least Mean Square Error

    Receiver-Initiated Handshaking MAC Based On Traffic Estimation for Underwater Sensor Networks

    Get PDF
    In underwater sensor networks (UWSNs), the unique characteristics of acoustic channels have posed great challenges for the design of medium access control (MAC) protocols. The long propagation delay problem has been widely explored in recent literature. However, the long preamble problem with acoustic modems revealed in real experiments brings new challenges to underwater MAC design. The overhead of control messages in handshaking-based protocols becomes significant due to the long preamble in underwater acoustic modems. To address this problem, we advocate the receiver-initiated handshaking method with parallel reservation to improve the handshaking efficiency. Despite some existing works along this direction, the data polling problem is still an open issue. Without knowing the status of senders, the receiver faces two challenges for efficient data polling: when to poll data from the sender and how much data to request. In this paper, we propose a traffic estimation-based receiver-initiated MAC (TERI-MAC) to solve this problem with an adaptive approach. Data polling in TERI-MAC depends on an online approximation of traffic distribution. It estimates the energy efficiency and network latency and starts the data request only when the preferred performance can be achieved. TERI-MAC can achieve a stable energy efficiency with arbitrary network traffic patterns. For traffic estimation, we employ a resampling technique to keep a small computation and memory overhead. The performance of TERI-MAC in terms of energy efficiency, channel utilization, and communication latency is verified in simulations. Our results show that, compared with existing receiver-initiated-based underwater MAC protocols, TERI-MAC can achieve higher energy efficiency at the price of a delay penalty. This confirms the strength of TERI-MAC for delay-tolerant applications

    Adapting Deep Learning for Underwater Acoustic Communication Channel Modeling

    Get PDF
    The recent emerging applications of novel underwater systems lead to increasing demand for underwater acoustic (UWA) communication and networking techniques. However, due to the challenging UWA channel characteristics, conventional wireless techniques are rarely applicable to UWA communication and networking. The cognitive and software-defined communication and networking are considered promising architecture of a novel UWA system design. As an essential component of a cognitive communication system, the modeling and prediction of the UWA channel impulse response (CIR) with deep generative models are studied in this work. Firstly, an underwater acoustic communication and networking testbed is developed for conducting various simulations and field experiments. The proposed test-bed also demonstrated the capabilities of developing and testing SDN protocols for a UWA network in both simulation and field experiments. Secondly, due to the lack of appropriate UWA CIR data sets for deep learning, a series of field UWA channel experiments have been conducted across a shallow freshwater river. Abundant UWA CIR data under various weather conditions have been collected and studied. The environmental factors that significantly affect the UWA channel state, including the solar radiation rate, the air temperature, the ice cover, the precipitation rate, etc., are analyzed in the case studies. The obtained UWA CIR data set with significant correlations to weather conditions can benefit future deep-learning research on UWA channels. Thirdly, a Wasserstein conditional generative adversarial network (WCGAN) is proposed to model the observed UWA CIR distribution. A power-weighted Jensen–Shannon divergence (JSD) is proposed to measure the similarity between the generated distribution and the experimental observations. The CIR samples generated by the WCGAN model show a lower power-weighted JSD than conventional estimated stochastic distributions. Finally, a modified conditional generative adversarial network (CGAN) model is proposed for predicting the UWA CIR distribution in the 15-minute range near future. This prediction model takes a sequence of historical and forecast weather information with a recent CIR observation as the conditional input. The generated CIR sample predictions also show a lower power-weighted JSD than conventional estimated stochastic distributions
    • …
    corecore