646 research outputs found

    FPGA ARCHITECTURE AND VERIFICATION OF BUILT IN SELF-TEST (BIST) FOR 32-BIT ADDER/SUBTRACTER USING DE0-NANO FPGA AND ANALOG DISCOVERY 2 HARDWARE

    Get PDF
    The integrated circuit (IC) is an integral part of everyday modern technology, and its application is very attractive to hardware and software design engineers because of its versatility, integration, power consumption, cost, and board area reduction. IC is available in various types such as Field Programming Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), System on Chip (SoC) architecture, Digital Signal Processing (DSP), microcontrollers (μC), and many more. With technology demand focused on faster, low power consumption, efficient IC application, design engineers are facing tremendous challenges in developing and testing integrated circuits that guaranty functionality, high fault coverage, and reliability as the transistor technology is shrinking to the point where manufacturing defects of ICs are affecting yield which associates with the increased cost of the part. The competitive IC market is pressuring manufactures of ICs to develop and market IC in a relatively quick turnaround which in return requires design and verification engineers to develop an integrated self-test structure that would ensure fault-free and the quality product is delivered on the market. 70-80% of IC design is spent on verification and testing to ensure high quality and reliability for the enduser. To test complex and sophisticated IC designs, the verification engineers must produce laborious and costly test fixtures which affect the cost of the part on the competitive market. To avoid increasing the part cost due to yield and test time to the end-user and to keep up with the competitive market many IC design engineers are deviating from complex external test fixture approach and are focusing on integrating Built-in Self-Test (BIST) or Design for Test (DFT) techniques onto IC’s which would reduce time to market but still guarantee high coverage for the product. Understanding the BIST, the architecture, as well as the application of IC, must be understood before developing IC. The architecture of FPGA is elaborated in this paper followed by several BIST techniques and applications of those BIST relative to FPGA, SoC, analog to digital (ADC), or digital to analog converters (DAC) that are integrated on IC. Paper is concluded with verification of BIST for the 32-bit adder/subtracter designed in Quartus II software using the Analog Discovery 2 module as stimulus and DE0-NANO FPGA board for verification

    The 2019 materials by design roadmap

    Get PDF
    Advances in renewable and sustainable energy technologies critically depend on our ability to design and realize materials with optimal properties. Materials discovery and design efforts ideally involve close coupling between materials prediction, synthesis and characterization. The increased use of computational tools, the generation of materials databases, and advances in experimental methods have substantially accelerated these activities. It is therefore an opportune time to consider future prospects for materials by design approaches. The purpose of this Roadmap is to present an overview of the current state of computational materials prediction, synthesis and characterization approaches, materials design needs for various technologies, and future challenges and opportunities that must be addressed. The various perspectives cover topics on computational techniques, validation, materials databases, materials informatics, high-throughput combinatorial methods, advanced characterization approaches, and materials design issues in thermoelectrics, photovoltaics, solid state lighting, catalysts, batteries, metal alloys, complex oxides and transparent conducting materials. It is our hope that this Roadmap will guide researchers and funding agencies in identifying new prospects for materials design

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Thermal and Visual Imaging and Accelerometry Developments to Assist with Arthritis Diagnosis

    Get PDF
    Juvenile Idiopathic Arthritis (JIA) is a disease that causes pain and inflammation in the joints of children. Its early diagnosis is important to avoid damage to the joints. Joint warmth, redness and movement restriction may be indicators of active arthritis hence accurate objective means to measure temperature, colour and range of movement (ROM) at the joint may assist diagnosis. In this study, three techniques with a potential to assist clinicians in diagnosing JIA were developed. These were based on high-resolution thermal imaging (HRTI), visual imaging and accelerometry. A detailed correlation analysis was performed between the developed methods and the consultant's clinical assessment of JIA diagnosis. Twenty-two patients (age: mean=10.6 years, SD = 2 years) with JIA diagnosis were recruited. 18 participated in the thermal/visual imaging study only, 2 in the accelerometry study only and 2 in both thermal/visual imaging and accelerometry studies. Thermal and visual images of the front and back of the knees and ankles of 20 patients were studied. All ethical approvals from Sheffield Hallam University and the National Health Service (NHS) were duly obtained before commencing the study. The thermal/visual imaging study involved developing image processing techniques to accurately identify and segment the regions of interest (ROIs). A tracking algorithm to accurately locate the ROIs was also implemented. An accelerometry system that is capable of recording movements from 4 channels was developed and its signals were processed by frequency spectrum analysis, short-time Fourier transform and wavelet packet analysis. The thermal imaging results showed a combined 71% correlation (for the front of knees and ankles) with clinical assessment. It may be possible that patients whom their arthritic joint was cooler than their healthy joints may have relied on their healthy leg more extensively for mobility (due to the pain on the arthritic leg) thus increasing its joints temperature. It was also found that JIA may affect the skin colour with a combined 42% correlation between the knees and ankles. The accelerometry results showed a 75% correlation with clinical assessment. The study for the first time brought together the three techniques of thermal imaging, visual imaging and accelerometry to assist with JIA diagnosis. The study demonstrated that the developed techniques have potential in assisting clinicians with JIA diagnosis. Improvements in timely diagnosis allow more effective treatment and can reduce the likelihood of joint damage in rheumatoid arthritis

    Ancient and historical systems

    Get PDF

    Critical Discussion of Ex situ and In situ TEM Measurements on Memristive Devices

    Get PDF
    Memristors are promising candidates for new memory technologies and are capable to mimic synapses in artificial neural networks. The switching in memristive devices occurs typically in few nanometer thin dielectric layers. The direct observation of the switching mechanism is crucial for better comprehension and improvements of memristors. Therefore, in situ experiments are conducted in a transmission electron microscope (TEM). However, sample preparation processes and electron beam irradiation can lead to a chemical and structural modification of the active layers. Moreover, devices may show significant device-to-device variability due to the details of processing parameters. Thus, it is essential to characterize the identical device electrically before microstructural analysis

    Polypyrrole (PPy) Coated Patterned Vertical Carbon Nanotube (pvCNT) Dry ECG Electrode Integrated with a Novel Wireless Resistive Analog Passive (WRAP) ECG Sensor

    Get PDF
    Polypyrrole (PPy) Coated Patterned Vertical Carbon Nanotube (pvCNT) Dry ECG Electrode Integrated with a Novel Wireless Resistive Analog Passive (WRAP) ECG Senso

    Synthesis Of Graphene Nanomaterials And Their Application In Electrochemical Energy Storage

    Get PDF
    The need to store and use energy on diverse scales in a modern technological society necessitates the design of large and small energy systems, among which electrical energy storage systems such as batteries and capacitors have attracted much interest in the past several decades. Supercapacitors, also known as ultracapacitors, or electrochemical capacitors, with fast power delivery and long cycle life are complementing or even replacing batteries in many applications. The rapid development of miniaturized electronic devices has led to a growing need for rechargeable micro-power sources with high performance. Among different sources, electrochemical micro-capacitors or micro-supercapacitors provide higher power density than their counterparts and are gaining increased interest from the research and engineering communities. Rechargeable Li ion batteries with high energy and power density, long cycling life, high charge-discharge rate (1C - 3C) and safe operation are in high demand as power sources and power backup for hybrid electric vehicles and other applications. In the present work, graphene-based graphene materials have been designed and synthesized for electrochemical energy storage applications, e.g., conventional supercapacitors (macro-supercapacitors), microsupercapacitors and lithium ion batteries. Factors influencing the formation and structure of graphitic petals grown by microwave plasma-enhanced chemical vapor deposition on oxidized silicon substrates were investigated through process variation and materials analysis. Insights gained into the growth mechanism of these graphitic petals suggest a simple scribing method can be used to control both the location and formation of petals on flat Si substrates. Transitional metal oxides and conducting polymers have been coated on the graphitic petal-based electrodes by facile chemical methods for multifunctional energy storage applications. Detailed electrochemical characterization (e.g., cyclic voltammetry and constant galvanostatic charge/discharge) has been carried out to evaluate the performance of electrodes

    Dispositivo de Deteção do Bruxismo do Sono

    Get PDF
    This thesis aims to explore and, ultimately, develop a system capable of monitoring physiological signals to detect bruxism events. Bruxism is a disorder characterized by the habit of pressing and grinding the teeth. These events can either occur during the day (Awake Bruxism) or during the night (Sleep Bruxism). Studies suggest that 20% of the adult population suffer from Awake Bruxism, and 8-16% from Sleep Bruxism. The consequences of this disorder are several, ranging from tooth wear, dental fractures, or abfraction, resulting in headaches, or facial myalgia. This dissertation focuses on the Sleep Bruxism type since it’s harder to detect and treat. First, a study about the evolution of technology in healthcare is carried out, fundamentally about how it was introduced and how did it get to the point it is now. The topic of wearable devices is also explored, in the sense that it’s where the market is going and how these devices can transform healthcare. Then, the study converges on the devices developed especially for bruxism, namely which devices, and what type of techniques are used. Subsequently, the general concept for the system is elaborated, exploring several options both in terms of devices and physiological data to be parameterized. However, some restrictions exist for the construction of the system. For the construction of an intraoral system, the device has to be of small dimensions and with low energy consumption. With these constraints, the system has implemented an Inertial Measurement Unit to estimate the orientation of the patient’s sleeping position, and force sensors to measure the force exerted between the teeth. For compactness, a Systemon-Chip is used, since it includes an ARM Cortex M4 processor, several peripherals, and an RF transceiver in one package. The system is not only responsible for the data acquisition, but also the data transmission. This is accomplished by using Bluetooth Low Energy, which is one of the most common protocols for low-power devices. Customized service is developed for this purpose, consisting of three different characteristics: the force characteristic, the accelerometer characteristic, and the gyroscope characteristic. The reason is for maximizing efficiency. The last step was to develop the prototype, testing its functionalities and try to project next iterations of the prototype
    • …
    corecore