356 research outputs found

    A non-commutative generalization of Stone duality

    Full text link
    We prove that the category of boolean inverse monoids is dually equivalent to the category of boolean groupoids. This generalizes the classical Stone duality between boolean algebras and boolean spaces. As an instance of this duality, we show that the boolean inverse monoid associated with the Cuntz groupoid is the strong orthogonal completion of the polycyclic (or Cuntz) monoid and so its group of units is a Thompson group

    Non-commutative Stone duality: inverse semigroups, topological groupoids and C*-algebras

    Full text link
    We study a non-commutative generalization of Stone duality that connects a class of inverse semigroups, called Boolean inverse ∧\wedge-semigroups, with a class of topological groupoids, called Hausdorff Boolean groupoids. Much of the paper is given over to showing that Boolean inverse ∧\wedge-semigroups arise as completions of inverse semigroups we call pre-Boolean. An inverse ∧\wedge-semigroup is pre-Boolean if and only if every tight filter is an ultrafilter, where the definition of a tight filter is obtained by combining work of both Exel and Lenz. A simple necessary condition for a semigroup to be pre-Boolean is derived and a variety of examples of inverse semigroups are shown to satisfy it. Thus the polycyclic inverse monoids, and certain Rees matrix semigroups over the polycyclics, are pre-Boolean and it is proved that the groups of units of their completions are precisely the Thompson-Higman groups Gn,rG_{n,r}. The inverse semigroups arising from suitable directed graphs are also pre-Boolean and the topological groupoids arising from these graph inverse semigroups under our non-commutative Stone duality are the groupoids that arise from the Cuntz-Krieger Cβˆ—C^{\ast}-algebras.Comment: The presentation has been sharpened up and some minor errors correcte
    • …
    corecore