22 research outputs found

    So you think you can track?

    Full text link
    This work introduces a multi-camera tracking dataset consisting of 234 hours of video data recorded concurrently from 234 overlapping HD cameras covering a 4.2 mile stretch of 8-10 lane interstate highway near Nashville, TN. The video is recorded during a period of high traffic density with 500+ objects typically visible within the scene and typical object longevities of 3-15 minutes. GPS trajectories from 270 vehicle passes through the scene are manually corrected in the video data to provide a set of ground-truth trajectories for recall-oriented tracking metrics, and object detections are provided for each camera in the scene (159 million total before cross-camera fusion). Initial benchmarking of tracking-by-detection algorithms is performed against the GPS trajectories, and a best HOTA of only 9.5% is obtained (best recall 75.9% at IOU 0.1, 47.9 average IDs per ground truth object), indicating the benchmarked trackers do not perform sufficiently well at the long temporal and spatial durations required for traffic scene understanding

    Use of a single reference image in visual processing of polyhedral objects.

    Get PDF
    He Yong.Thesis (M.Phil.)--Chinese University of Hong Kong, 2003.Includes bibliographical references (leaves 69-72).Abstracts in English and Chinese.ABSTRACT --- p.iACKNOWLEDGEMENTS --- p.vTABLE OF CONTENTS --- p.viLIST OF FIGURES --- p.viiiLIST OF TABLES --- p.xChapter 1 --- INTRODUCTION --- p.1Chapter 2 --- PRELIMINARY --- p.6Chapter 3 --- IMAGE MOSAICING FOR SINGLY VISIBLE SURFACES --- p.9Chapter 3.1 --- Background --- p.9Chapter 3.2 --- Correspondence Inference Mechanism --- p.13Chapter 3.3 --- Seamless Lining up of Surface Boundary --- p.17Chapter 3.4 --- Experimental Result --- p.21Chapter 3.5 --- Summary of Image Mosaicing Work --- p.32Chapter 4 --- MOBILE ROBOT SELF-LOCALIZATION FROM MONOCULAR VISION --- p.33Chapter 4.1 --- Background --- p.33Chapter 4.2 --- Problem Definition --- p.37Chapter 4.3 --- Our Strategy of Localizing the Mobile Robot --- p.38Chapter 4.3.1 --- Establishing Correspondences --- p.40Chapter 4.3.2 --- Determining Position from Factorizing E-matrix --- p.49Chapter 4.3.3 --- Improvement on the Factorization Result --- p.55Chapter 4.4 --- Experimental Result --- p.56Chapter 4.5 --- Summary of Mobile Robot Self-localization Work --- p.62Chapter 5 --- CONCLUSION AND FUTURE WORK --- p.63APPENDIX --- p.67BIBLIOGRAPHY --- p.6

    Augmented reality for non-rigid surfaces

    Get PDF
    Augmented Reality (AR) is the process of integrating virtual elements in reality, often by mixing computer graphics into a live video stream of a real scene. It requires registration of the target object with respect to the cameras. To this end, some approaches rely on dedicated hardware, such as magnetic trackers or infra-red cameras, but they are too expensive and cumbersome to reach a large public. Others are based on specifically designed markers which usually look like bar-codes. However, they alter the look of objects to be augmented, thereby hindering their use in application for which visual design matters. Recent advances in Computer Vision have made it possible to track and detect objects by relying on natural features. However, no such method is commonly used in the AR community, because the maturity of available packages is not sufficient yet. As far as deformable surfaces are concerned, the choice is even more limited, mainly because initialization is so difficult. Our main contribution is therefore a new AR framework that can properly augment deforming surfaces in real-time. Its target platform is a standard PC and a single webcam. It does not require any complex calibration procedure, making it perfectly suitable for novice end-users. To satisfy to the most demanding application designers, our framework does not require any scene engineering, renders virtual objects illuminated by real light, and let real elements occlude virtual ones. To meet this challenge, we developed several innovative techniques. Our approach to real-time registration of a deforming surface is based on wide-baseline feature matching. However, traditional outlier elimination techniques such as RANSAC are unable to handle the non-rigid surface's large number of degrees of freedom. We therefore proposed a new robust estimation scheme that allows both 2–D and 3–D non-rigid surface registration. Another issue of critical importance in AR to achieve realism is illumination handling, for which existing techniques often require setup procedures or devices such as reflective spheres. By contrast, our framework includes methods to estimate illumination for rendering purposes without sacrificing ease of use. Finally, several existing approaches to handling occlusions in AR rely on multiple cameras or can only deal with occluding objects modeled beforehand. Our requires only one camera and models occluding objects at runtime. We incorporated these components in a consistent and flexible framework. We used it to augment many different objects such as a deforming T-shirt or a sheet of paper, under challenging conditions, in real-time, and with correct handling of illumination and occlusions. We also used our non-rigid surface registration technique to measure the shape of deformed sails. We validated the ease of deployment of our framework by distributing a software package and letting an artist use it to create two AR applications

    Image Mosaicing and Super-resolution

    Full text link

    Perception de la géométrie de l'environnement pour la navigation autonome

    Get PDF
    Le but de de la recherche en robotique mobile est de donner aux robots la capacité d'accomplir des missions dans un environnement qui n'est pas parfaitement connu. Mission, qui consiste en l'exécution d'un certain nombre d'actions élémentaires (déplacement, manipulation d'objets...) et qui nécessite une localisation précise, ainsi que la construction d'un bon modÚle géométrique de l'environnement, a partir de l'exploitation de ses propres capteurs, des capteurs externes, de l'information provenant d'autres robots et de modÚle existant, par exemple d'un systÚme d'information géographique. L'information commune est la géométrie de l'environnement. La premiÚre partie du manuscrit couvre les différents méthodes d'extraction de l'information géométrique. La seconde partie présente la création d'un modÚle géométrique en utilisant un graphe, ainsi qu'une méthode pour extraire de l'information du graphe et permettre au robot de se localiser dans l'environnement.The goal of the mobile robotic research is to give robots the capability to accomplish missions in an environment that might be unknown. To accomplish his mission, the robot need to execute a given set of elementary actions (movement, manipulation of objects...) which require an accurate localisation of the robot, as well as a the construction of good geometric model of the environment. Thus, a robot will need to take the most out of his own sensors, of external sensors, of information coming from an other robot and of existing model coming from a Geographic Information System. The common information is the geometry of the environment. The first part of the presentation will be about the different methods to extract geometric information. The second part will be about the creation of the geometric model using a graph structure, along with a method to retrieve information in the graph to allow the robot to localise itself in the environment

    Grouping Uncertain Oriented Projective Geometric Entities with Application to Automatic Building Reconstruction

    Get PDF
    The fully automatic reconstruction of 3d scenes from a set of 2d images has always been a key issue in photogrammetry and computer vision and has not been solved satisfactory so far. Most of the current approaches match features between the images based on radiometric cues followed by a reconstruction using the image geometry. The motivation for this work is the conjecture that in the presence of highly redundant data it should be possible to recover the scene structure by grouping together geometric primitives in a bottom-up manner. Oriented projective geometry will be used throughout this work, which allows to represent geometric primitives, such as points, lines and planes in 2d and 3d space as well as projective cameras, together with their uncertainty. The first major contribution of the work is the use of uncertain oriented projective geometry, rather than uncertain projective geometry, that enables the representation of more complex compound entities, such as line segments and polygons in 2d and 3d space as well as 2d edgels and 3d facets. Within the uncertain oriented projective framework a procedure is developed, which allows to test pairwise relations between the various uncertain oriented projective entities. Again, the novelty lies in the possibility to check relations between the novel compound entities. The second major contribution of the work is the development of a data structure, specifically designed to enable performing the tests between large numbers of entities in an efficient manner. Being able to efficiently test relations between the geometric entities, a framework for grouping those entities together is developed. Various different grouping methods are discussed. The third major contribution of this work is the development of a novel grouping method that by analyzing the entropy change incurred by incrementally adding observations into an estimation is able to balance efficiency against robustness in order to achieve better grouping results. Finally the applicability of the proposed representations, tests and grouping methods for the task of purely geometry based building reconstruction from oriented aerial images is demonstrated. It will be shown that in the presence of highly redundant datasets it is possible to achieve reasonable reconstruction results by grouping together geometric primitives.Gruppierung unsicherer orientierter projektiver geometrischer Elemente mit Anwendung in der automatischen GebĂ€uderekonstruktion Die vollautomatische Rekonstruktion von 3D Szenen aus einer Menge von 2D Bildern war immer ein Hauptanliegen in der Photogrammetrie und Computer Vision und wurde bisher noch nicht zufriedenstellend gelöst. Die meisten aktuellen AnsĂ€tze ordnen Merkmale zwischen den Bildern basierend auf radiometrischen Eigenschaften zu. Daran schließt sich dann eine Rekonstruktion auf der Basis der Bildgeometrie an. Die Motivation fĂŒr diese Arbeit ist die These, dass es möglich sein sollte, die Struktur einer Szene durch Gruppierung geometrischer Primitive zu rekonstruieren, falls die Eingabedaten genĂŒgend redundant sind. Orientierte projektive Geometrie wird in dieser Arbeit zur ReprĂ€sentation geometrischer Primitive, wie Punkten, Linien und Ebenen in 2D und 3D sowie projektiver Kameras, zusammen mit ihrer Unsicherheit verwendet.Der erste Hauptbeitrag dieser Arbeit ist die Verwendung unsicherer orientierter projektiver Geometrie, anstatt von unsicherer projektiver Geometrie, welche die ReprĂ€sentation von komplexeren zusammengesetzten Objekten, wie Liniensegmenten und Polygonen in 2D und 3D sowie 2D Edgels und 3D Facetten, ermöglicht. Innerhalb dieser unsicheren orientierten projektiven ReprĂ€sentation wird ein Verfahren zum testen paarweiser Relationen zwischen den verschiedenen unsicheren orientierten projektiven geometrischen Elementen entwickelt. Dabei liegt die Neuheit wieder in der Möglichkeit, Relationen zwischen den neuen zusammengesetzten Elementen zu prĂŒfen. Der zweite Hauptbeitrag dieser Arbeit ist die Entwicklung einer Datenstruktur, welche speziell auf die effiziente PrĂŒfung von solchen Relationen zwischen vielen Elementen ausgelegt ist. Die Möglichkeit zur effizienten PrĂŒfung von Relationen zwischen den geometrischen Elementen erlaubt nun die Entwicklung eines Systems zur Gruppierung dieser Elemente. Verschiedene Gruppierungsmethoden werden vorgestellt. Der dritte Hauptbeitrag dieser Arbeit ist die Entwicklung einer neuen Gruppierungsmethode, die durch die Analyse der Ă€nderung der Entropie beim HinzufĂŒgen von Beobachtungen in die SchĂ€tzung Effizienz und Robustheit gegeneinander ausbalanciert und dadurch bessere Gruppierungsergebnisse erzielt. Zum Schluss wird die Anwendbarkeit der vorgeschlagenen ReprĂ€sentationen, Tests und Gruppierungsmethoden fĂŒr die ausschließlich geometriebasierte GebĂ€uderekonstruktion aus orientierten Luftbildern demonstriert. Es wird gezeigt, dass unter der Annahme von hoch redundanten DatensĂ€tzen vernĂŒnftige Rekonstruktionsergebnisse durch Gruppierung von geometrischen Primitiven erzielbar sind

    Grouping Uncertain Oriented Projective Geometric Entities with Application to Automatic Building Reconstruction

    Get PDF
    The fully automatic reconstruction of 3d scenes from a set of 2d images has always been a key issue in photogrammetry and computer vision and has not been solved satisfactory so far. Most of the current approaches match features between the images based on radiometric cues followed by a reconstruction using the image geometry. The motivation for this work is the conjecture that in the presence of highly redundant data it should be possible to recover the scene structure by grouping together geometric primitives in a bottom-up manner. Oriented projective geometry will be used throughout this work, which allows to represent geometric primitives, such as points, lines and planes in 2d and 3d space as well as projective cameras, together with their uncertainty. The first major contribution of the work is the use of uncertain oriented projective geometry, rather than uncertain projective geometry, that enables the representation of more complex compound entities, such as line segments and polygons in 2d and 3d space as well as 2d edgels and 3d facets. Within the uncertain oriented projective framework a procedure is developed, which allows to test pairwise relations between the various uncertain oriented projective entities. Again, the novelty lies in the possibility to check relations between the novel compound entities. The second major contribution of the work is the development of a data structure, specifically designed to enable performing the tests between large numbers of entities in an efficient manner. Being able to efficiently test relations between the geometric entities, a framework for grouping those entities together is developed. Various different grouping methods are discussed. The third major contribution of this work is the development of a novel grouping method that by analyzing the entropy change incurred by incrementally adding observations into an estimation is able to balance efficiency against robustness in order to achieve better grouping results. Finally the applicability of the proposed representations, tests and grouping methods for the task of purely geometry based building reconstruction from oriented aerial images is demonstrated. lt will be shown that in the presence of highly redundant datasets it is possible to achieve reasonable reconstruction results by grouping together geometric primitives.Gruppierung unsicherer orientierter projektiver geometrischer Elemente mit Anwendung in der automatischen GebĂ€uderekonstruktion Die vollautomatische Rekonstruktion von 3D Szenen aus einer Menge von 2D Bildern war immer ein Hauptanliegen in der Photogrammetrie und Computer Vision und wurde bisher noch nicht zufriedenstellend gelöst. Die meisten aktuellen AnsĂ€tze ordnen Merkmale zwischen den Bildern basierend auf radiometrischen Eigenschaften zu. Daran schließt sich dann eine Rekonstruktion auf der Basis der Bildgeometrie an. Die Motivation fĂŒr diese Arbeit ist die These, dass es möglich sein sollte, die Struktur einer Szene durch Gruppierung geometrischer Primitive zu rekonstruieren, falls die Eingabedaten genĂŒgend redundant sind. Orientierte projektive Geometrie wird in dieser Arbeit zur ReprĂ€sentation geometrischer Primitive, wie Punkten, Linien und Ebenen in 2D und 3D sowie projektiver Kameras, zusammen mit ihrer Unsicherheit verwendet. Der erste Hauptbeitrag dieser Arbeit ist die Verwendung unsicherer orientierter projektiver Geometrie, anstatt von unsicherer projektiver Geometrie, welche die ReprĂ€sentation von komplexeren zusammengesetzten Objekten, wie Liniensegmenten und Polygonen in 2D und 3D sowie 2D Edgels und 3D Facetten, ermöglicht. Innerhalb dieser unsicheren orientierten projektiven ReprĂ€sentation wird ein Verfahren zum Testen paarweiser Relationen zwischen den verschiedenen unsicheren orientierten projektiven geometrischen Elementen entwickelt. Dabei liegt die Neuheit wieder in der Möglichkeit, Relationen zwischen den neuen zusammengesetzten Elementen zu prĂŒfen. Der zweite Hauptbeitrag dieser Arbeit ist die Entwicklung einer Datenstruktur, welche speziell auf die effiziente PrĂŒfung von solchen Relationen zwischen vielen Elementen ausgelegt ist. Die Möglichkeit zur effizienten PrĂŒfung von Relationen zwischen den geometrischen Elementen erlaubt nun die Entwicklung eines Systems zur Gruppierung dieser Elemente. Verschiedene Gruppierungsmethoden werden vorgestellt. Der dritte Hauptbeitrag dieser Arbeit ist die Entwicklung einer neuen Gruppierungsmethode, die durch die Analyse der Änderung der Entropie beim HinzufĂŒgen von Beobachtungen in die SchĂ€tzung Effizienz und Robustheit gegeneinander ausbalanciert und dadurch bessere Gruppierungsergebnisse erzielt. Zum Schluss wird die Anwendbarkeit der vorgeschlagenen ReprĂ€sentationen, Tests und Gruppierungsmethoden fĂŒr die ausschließlich geometriebasierte GebĂ€uderekonstruktion aus orientierten Luftbildern demonstriert. Es wird gezeigt, dass unter der Annahme von hoch redundanten DatensĂ€tzen vernĂŒnftige Rekonstruktionsergebnisse durch Gruppierung von geometrischen Primitiven erzielbar sind

    Self-Calibration of Multi-Camera Systems for Vehicle Surround Sensing

    Get PDF
    Multi-camera systems are being deployed in a variety of vehicles and mobile robots today. To eliminate the need for cost and labor intensive maintenance and calibration, continuous self-calibration is highly desirable. In this book we present such an approach for self-calibration of multi-Camera systems for vehicle surround sensing. In an extensive evaluation we assess our algorithm quantitatively using real-world data

    Self-Calibration of Multi-Camera Systems for Vehicle Surround Sensing

    Get PDF
    Multikamerasysteme werden heute bereits in einer Vielzahl von Fahrzeugen und mobilen Robotern eingesetzt. Die Anwendungen reichen dabei von einfachen Assistenzfunktionen wie der Erzeugung einer virtuellen Rundumsicht bis hin zur Umfelderfassung, wie sie fĂŒr teil- und vollautomatisches Fahren benötigt wird. Damit aus den Kamerabildern metrische GrĂ¶ĂŸen wie Distanzen und Winkel abgeleitet werden können und ein konsistentes Umfeldmodell aufgebaut werden kann, muss das Abbildungsverhalten der einzelnen Kameras sowie deren relative Lage zueinander bekannt sein. Insbesondere die Bestimmung der relativen Lage der Kameras zueinander, die durch die extrinsische Kalibrierung beschrieben wird, ist aufwendig, da sie nur im Gesamtverbund erfolgen kann. DarĂŒber hinaus ist zu erwarten, dass es ĂŒber die Lebensdauer des Fahrzeugs hinweg zu nicht vernachlĂ€ssigbaren VerĂ€nderungen durch Ă€ußere EinflĂŒsse kommt. Um den hohen Zeit- und Kostenaufwand einer regelmĂ€ĂŸigen Wartung zu vermeiden, ist ein Selbstkalibrierungsverfahren erforderlich, das die extrinsischen Kalibrierparameter fortlaufend nachschĂ€tzt. FĂŒr die Selbstkalibrierung wird typischerweise das Vorhandensein ĂŒberlappender Sichtbereiche ausgenutzt, um die extrinsische Kalibrierung auf der Basis von Bildkorrespondenzen zu schĂ€tzen. Falls die Sichtbereiche mehrerer Kameras jedoch nicht ĂŒberlappen, lassen sich die Kalibrierparameter auch aus den relativen Bewegungen ableiten, die die einzelnen Kameras beobachten. Die Bewegung typischer Straßenfahrzeuge lĂ€sst dabei jedoch nicht die Bestimmung aller Kalibrierparameter zu. Um die vollstĂ€ndige SchĂ€tzung der Parameter zu ermöglichen, lassen sich weitere Bedingungsgleichungen, die sich z.B. aus der Beobachtung der Bodenebene ergeben, einbinden. In dieser Arbeit wird dazu in einer theoretischen Analyse gezeigt, welche Parameter sich aus der Kombination verschiedener Bedingungsgleichungen eindeutig bestimmen lassen. Um das Umfeld eines Fahrzeugs vollstĂ€ndig erfassen zu können, werden typischerweise Objektive, wie zum Beispiel Fischaugenobjektive, eingesetzt, die einen sehr großen Bildwinkel ermöglichen. In dieser Arbeit wird ein Verfahren zur Bestimmung von Bildkorrespondenzen vorgeschlagen, das die geometrischen Verzerrungen, die sich durch die Verwendung von Fischaugenobjektiven und sich stark Ă€ndernden Ansichten ergeben, berĂŒcksichtigt. Darauf aufbauend stellen wir ein robustes Verfahren zur NachfĂŒhrung der Parameter der Bodenebene vor. Basierend auf der theoretischen Analyse der Beobachtbarkeit und den vorgestellten Verfahren stellen wir ein robustes, rekursives Kalibrierverfahren vor, das auf einem erweiterten Kalman-Filter aufbaut. Das vorgestellte Kalibrierverfahren zeichnet sich insbesondere durch die geringe Anzahl von internen Parametern, sowie durch die hohe FlexibilitĂ€t hinsichtlich der einbezogenen Bedingungsgleichungen aus und basiert einzig auf den Bilddaten des Multikamerasystems. In einer umfangreichen experimentellen Auswertung mit realen Daten vergleichen wir die Ergebnisse der auf unterschiedlichen Bedingungsgleichungen und Bewegungsmodellen basierenden Verfahren mit den aus einer Referenzkalibrierung bestimmten Parametern. Die besten Ergebnisse wurden dabei durch die Kombination aller vorgestellten Bedingungsgleichungen erzielt. Anhand mehrerer Beispiele zeigen wir, dass die erreichte Genauigkeit ausreichend fĂŒr eine Vielzahl von Anwendungen ist

    Robuste und genaue Erkennung von Mid-Level-Primitiven fĂŒr die 3D-Rekonstruktion in von Menschen geschaffenen Umgebungen

    Get PDF
    The detection of geometric primitives such as points, lines and arcs is a fundamental step in computer vision techniques like image analysis, pattern recognition and 3D scene reconstruction. In this thesis, we present a framework that enables a reliable detection of geometric primitives in images. The focus is on application in man-made environments, although the process is not limited to this. The method provides robust and subpixel accurate detection of points, lines and arcs, and builds up a graph describing the topological relationships between the detected features. The detection method works directly on distorted perspective and fisheye images. The additional recognition of repetitive structures in images ensures the unambiguity of the features in their local environment. We can show that our approach achieves a high localization accuracy comparable to the state-of-the-art methods and at the same time is more robust against disturbances caused by noise. In addition, our approach allows extracting more fine details in the images. The detection accuracy achieved on the real-world scenes is constantly above that achieved by the other methods. Furthermore, our process can reliably distinguish between line and arc segments. The additional topological information extracted by our method is largely consistent over several images of a scene and can therefore be a support for subsequent processing steps, such as matching and correspondence search. We show how the detection method can be integrated into a complete feature-based 3D reconstruction pipeline and present a novel reconstruction method that uses the topological relationships of the features to create a highly abstract but semantically rich 3D model of the reconstructed scenes, in which certain geometric structures can easily be detected.Die Detektion von geometrischen Primitiven wie Punkten, Linien und Bögen ist ein elementarer Verarbeitungsschritt fĂŒr viele Techniken des maschinellen Sehens wie Bildanalyse, Mustererkennung und 3D-Szenenrekonstruktion. In dieser Arbeit wird eine Methode vorgestellt, die eine zuverlĂ€ssige Detektion von geometrischen Primitiven in Bildern ermöglicht. Der Fokus liegt auf der Anwendung in urbanen Umgebungen, wobei der Prozess nicht darauf beschrĂ€nkt ist. Die Methode ermöglicht eine robuste und subpixelgenaue Detektion von Punkten, Linien und Bögen und erstellt einen Graphen, der die topologischen Beziehungen zwischen den detektierten Merkmalen beschreibt. Die Detektionsmethode kann direkt auf verzeichnete perspektivische Bilder und Fischaugenbilder angewendet werden. Die zusĂ€tzliche Erkennung sich wiederholender Strukturen in Bildern gewĂ€hrleistet die Eindeutigkeit der Merkmale in ihrer lokalen Umgebung. Das neu entwickelte Verfahren erreicht eine hohe Lokalisierungsgenauigkeit, die dem Stand der Technik entspricht und gleichzeitig robuster gegenĂŒber Störungen durch Rauschen ist. DarĂŒber hinaus ermöglicht das Verfahren, mehr Details in den Bildern zu extrahieren. Die Detektionsrate ist bei dem neuen Verfahren auf den realen DatensĂ€tzen stets höher als bei dem aktuellen Stand der Technik. DarĂŒber hinaus kann das neue Verfahren zuverlĂ€ssig zwischen Linien- und Bogensegmenten unterscheiden. Die durch das neue Verfahren gewonnenen zusĂ€tzlichen topologischen Informationen sind weitgehend konsistent ĂŒber mehrere Bilder einer Szene und können somit eine UnterstĂŒtzung fĂŒr nachfolgende Verarbeitungsschritte wie Matching und Korrespondenzsuche sein. Die Detektionsmethode wird in eine vollstĂ€ndige merkmalsbasierte 3D-Rekonstruktionspipeline integriert und es wird eine neuartige Rekonstruktionsmethode vorgestellt, die die topologischen Beziehungen der Merkmale nutzt, um ein abstraktes, aber zugleich semantisch reichhaltiges 3D-Modell der rekonstruierten Szenen zu erstellen, in dem komplexere geometrische Strukturen leicht detektiert werden können
    corecore