6,063 research outputs found

    Relative Entropy Relaxations for Signomial Optimization

    Full text link
    Signomial programs (SPs) are optimization problems specified in terms of signomials, which are weighted sums of exponentials composed with linear functionals of a decision variable. SPs are non-convex optimization problems in general, and families of NP-hard problems can be reduced to SPs. In this paper we describe a hierarchy of convex relaxations to obtain successively tighter lower bounds of the optimal value of SPs. This sequence of lower bounds is computed by solving increasingly larger-sized relative entropy optimization problems, which are convex programs specified in terms of linear and relative entropy functions. Our approach relies crucially on the observation that the relative entropy function -- by virtue of its joint convexity with respect to both arguments -- provides a convex parametrization of certain sets of globally nonnegative signomials with efficiently computable nonnegativity certificates via the arithmetic-geometric-mean inequality. By appealing to representation theorems from real algebraic geometry, we show that our sequences of lower bounds converge to the global optima for broad classes of SPs. Finally, we also demonstrate the effectiveness of our methods via numerical experiments

    Computational Complexity versus Statistical Performance on Sparse Recovery Problems

    Get PDF
    We show that several classical quantities controlling compressed sensing performance directly match classical parameters controlling algorithmic complexity. We first describe linearly convergent restart schemes on first-order methods solving a broad range of compressed sensing problems, where sharpness at the optimum controls convergence speed. We show that for sparse recovery problems, this sharpness can be written as a condition number, given by the ratio between true signal sparsity and the largest signal size that can be recovered by the observation matrix. In a similar vein, Renegar's condition number is a data-driven complexity measure for convex programs, generalizing classical condition numbers for linear systems. We show that for a broad class of compressed sensing problems, the worst case value of this algorithmic complexity measure taken over all signals matches the restricted singular value of the observation matrix which controls robust recovery performance. Overall, this means in both cases that, in compressed sensing problems, a single parameter directly controls both computational complexity and recovery performance. Numerical experiments illustrate these points using several classical algorithms.Comment: Final version, to appear in information and Inferenc

    Construction of power flow feasibility sets

    Full text link
    We develop a new approach for construction of convex analytically simple regions where the AC power flow equations are guaranteed to have a feasible solutions. Construction of these regions is based on efficient semidefinite programming techniques accelerated via sparsity exploiting algorithms. Resulting regions have a simple geometric shape in the space of power injections (polytope or ellipsoid) and can be efficiently used for assessment of system security in the presence of uncertainty. Efficiency and tightness of the approach is validated on a number of test networks

    A Combinatorial Certifying Algorithm for Linear Programming Problems with Gainfree Leontief Substitution Systems

    Full text link
    Linear programming (LP) problems with gainfree Leontief substitution systems have been intensively studied in economics and operations research, and include the feasibility problem of a class of Horn systems, which arises in, e.g., polyhedral combinatorics and logic. This subclass of LP problems admits a strongly polynomial time algorithm, where devising such an algorithm for general LP problems is one of the major theoretical open questions in mathematical optimization and computer science. Recently, much attention has been paid to devising certifying algorithms in software engineering, since those algorithms enable one to confirm the correctness of outputs of programs with simple computations. In this paper, we provide the first combinatorial (and strongly polynomial time) certifying algorithm for LP problems with gainfree Leontief substitution systems. As a by-product, we answer affirmatively an open question whether the feasibility problem of the class of Horn systems admits a combinatorial certifying algorithm

    A note on Probably Certifiably Correct algorithms

    Get PDF
    Many optimization problems of interest are known to be intractable, and while there are often heuristics that are known to work on typical instances, it is usually not easy to determine a posteriori whether the optimal solution was found. In this short note, we discuss algorithms that not only solve the problem on typical instances, but also provide a posteriori certificates of optimality, probably certifiably correct (PCC) algorithms. As an illustrative example, we present a fast PCC algorithm for minimum bisection under the stochastic block model and briefly discuss other examples
    • …
    corecore