59 research outputs found

    Improved Merlin-Arthur Protocols for Central Problems in Fine-Grained Complexity

    Get PDF

    Subsampled Power Iteration: a Unified Algorithm for Block Models and Planted CSP's

    Get PDF
    We present an algorithm for recovering planted solutions in two well-known models, the stochastic block model and planted constraint satisfaction problems, via a common generalization in terms of random bipartite graphs. Our algorithm matches up to a constant factor the best-known bounds for the number of edges (or constraints) needed for perfect recovery and its running time is linear in the number of edges used. The time complexity is significantly better than both spectral and SDP-based approaches. The main contribution of the algorithm is in the case of unequal sizes in the bipartition (corresponding to odd uniformity in the CSP). Here our algorithm succeeds at a significantly lower density than the spectral approaches, surpassing a barrier based on the spectral norm of a random matrix. Other significant features of the algorithm and analysis include (i) the critical use of power iteration with subsampling, which might be of independent interest; its analysis requires keeping track of multiple norms of an evolving solution (ii) it can be implemented statistically, i.e., with very limited access to the input distribution (iii) the algorithm is extremely simple to implement and runs in linear time, and thus is practical even for very large instances

    Strongly Refuting Random CSPs Below the Spectral Threshold

    Full text link
    Random constraint satisfaction problems (CSPs) are known to exhibit threshold phenomena: given a uniformly random instance of a CSP with nn variables and mm clauses, there is a value of m=Ω(n)m = \Omega(n) beyond which the CSP will be unsatisfiable with high probability. Strong refutation is the problem of certifying that no variable assignment satisfies more than a constant fraction of clauses; this is the natural algorithmic problem in the unsatisfiable regime (when m/n=ω(1)m/n = \omega(1)). Intuitively, strong refutation should become easier as the clause density m/nm/n grows, because the contradictions introduced by the random clauses become more locally apparent. For CSPs such as kk-SAT and kk-XOR, there is a long-standing gap between the clause density at which efficient strong refutation algorithms are known, m/nO~(nk/21)m/n \ge \widetilde O(n^{k/2-1}), and the clause density at which instances become unsatisfiable with high probability, m/n=ω(1)m/n = \omega (1). In this paper, we give spectral and sum-of-squares algorithms for strongly refuting random kk-XOR instances with clause density m/nO~(n(k/21)(1δ))m/n \ge \widetilde O(n^{(k/2-1)(1-\delta)}) in time exp(O~(nδ))\exp(\widetilde O(n^{\delta})) or in O~(nδ)\widetilde O(n^{\delta}) rounds of the sum-of-squares hierarchy, for any δ[0,1)\delta \in [0,1) and any integer k3k \ge 3. Our algorithms provide a smooth transition between the clause density at which polynomial-time algorithms are known at δ=0\delta = 0, and brute-force refutation at the satisfiability threshold when δ=1\delta = 1. We also leverage our kk-XOR results to obtain strong refutation algorithms for SAT (or any other Boolean CSP) at similar clause densities. Our algorithms match the known sum-of-squares lower bounds due to Grigoriev and Schonebeck, up to logarithmic factors. Additionally, we extend our techniques to give new results for certifying upper bounds on the injective tensor norm of random tensors

    Satisfiability Modulo Transcendental Functions via Incremental Linearization

    Full text link
    In this paper we present an abstraction-refinement approach to Satisfiability Modulo the theory of transcendental functions, such as exponentiation and trigonometric functions. The transcendental functions are represented as uninterpreted in the abstract space, which is described in terms of the combined theory of linear arithmetic on the rationals with uninterpreted functions, and are incrementally axiomatized by means of upper- and lower-bounding piecewise-linear functions. Suitable numerical techniques are used to ensure that the abstractions of the transcendental functions are sound even in presence of irrationals. Our experimental evaluation on benchmarks from verification and mathematics demonstrates the potential of our approach, showing that it compares favorably with delta-satisfiability /interval propagation and methods based on theorem proving

    Certifying solution geometry in random CSPs: counts, clusters and balance

    Get PDF
    An active topic in the study of random constraint satisfaction problems (CSPs) is the geometry of the space of satisfying or almost satisfying assignments as the function of the density, for which a precise landscape of predictions has been made via statistical physics-based heuristics. In parallel, there has been a recent flurry of work on refuting random constraint satisfaction problems, via nailing refutation thresholds for spectral and semidefinite programming-based algorithms, and also on counting solutions to CSPs. Inspired by this, the starting point for our work is the following question: what does the solution space for a random CSP look like to an efficient algorithm? In pursuit of this inquiry, we focus on the following problems about random Boolean CSPs at the densities where they are unsatisfiable but no refutation algorithm is known. 1. Counts. For every Boolean CSP we give algorithms that with high probability certify a subexponential upper bound on the number of solutions. We also give algorithms to certify a bound on the number of large cuts in a Gaussian-weighted graph, and the number of large independent sets in a random dd-regular graph. 2. Clusters. For Boolean 33CSPs we give algorithms that with high probability certify an upper bound on the number of clusters of solutions. 3. Balance. We also give algorithms that with high probability certify that there are no "unbalanced" solutions, i.e., solutions where the fraction of +1+1s deviates significantly from 50%50\%. Finally, we also provide hardness evidence suggesting that our algorithms for counting are optimal

    Average-Case Complexity

    Full text link
    We survey the average-case complexity of problems in NP. We discuss various notions of good-on-average algorithms, and present completeness results due to Impagliazzo and Levin. Such completeness results establish the fact that if a certain specific (but somewhat artificial) NP problem is easy-on-average with respect to the uniform distribution, then all problems in NP are easy-on-average with respect to all samplable distributions. Applying the theory to natural distributional problems remain an outstanding open question. We review some natural distributional problems whose average-case complexity is of particular interest and that do not yet fit into this theory. A major open question whether the existence of hard-on-average problems in NP can be based on the P\neqNP assumption or on related worst-case assumptions. We review negative results showing that certain proof techniques cannot prove such a result. While the relation between worst-case and average-case complexity for general NP problems remains open, there has been progress in understanding the relation between different ``degrees'' of average-case complexity. We discuss some of these ``hardness amplification'' results
    corecore