15 research outputs found

    Learning and Robustness With Applications To Mechanism Design

    Get PDF
    The design of economic mechanisms, especially auctions, is an increasingly important part of the modern economy. A particularly important property for a mechanism is strategyproofness -- the mechanism must be robust to strategic manipulations so that the participants in the mechanism have no incentive to lie. Yet in the important case when the mechanism designer's goal is to maximize their own revenue, the design of optimal strategyproof mechanisms has proved immensely difficult, with very little progress after decades of research. Recently, to escape this impasse, a number of works have parameterized auction mechanisms as deep neural networks, and used gradient descent to successfully learn approximately optimal and approximately strategyproof mechanisms. We present several improvements on these techniques. When an auction mechanism is represented as a neural network mapping bids from outcomes, strategyproofness can be thought of as a type of adversarial robustness. Making this connection explicit, we design a modified architecture for learning auctions which is amenable to integer-programming-based certification techniques from the adversarial robustness literature. Existing baselines are empirically strategyproof, but with no way to be certain how strong that guarantee really is. By contrast, we are able to provide perfectly tight bounds on the degree to which strategyproofness is violated at any given point. Existing neural networks for auctions learn to maximize revenue subject to strategyproofness. Yet in many auctions, fairness is also an important concern -- in particular, fairness with respect to the items in the auction, which may represent, for instance, ad impressions for different protected demographic groups. With our new architecture, ProportionNet, we impose fairness constraints in addition to the strategyproofness constraints, and find approximately fair, approximately optimal mechanisms which outperform baselines. With PreferenceNet, we extend this approach to notions of fairness that are learned from possibly vague human preferences. Existing network architectures can represent additive and unit-demand auctions, but are unable to imposing more complex exactly-k constraints on the allocations made to the bidders. By using the Sinkhorn algorithm to add differentiable matching constraints, we produce a network which can represent valid allocations in such settings. Finally, we present a new auction architecture which is a differentiable version of affine maximizer auctions, modified to offer lotteries in order to potentially increase revenue. This architecture is always perfectly strategyproof (avoiding the Lagrangian-based constrained optimization of RegretNet) -- to achieve this goal, however, we need to accept that we cannot in general represent the optimal auction

    Deep Learning for Two-Sided Matching

    Full text link
    We initiate the use of a multi-layer neural network to model two-sided matching and to explore the design space between strategy-proofness and stability. It is well known that both properties cannot be achieved simultaneously but the efficient frontier in this design space is not understood. We show empirically that it is possible to achieve a good compromise between stability and strategy-proofness-substantially better than that achievable through a convex combination of deferred acceptance (stable and strategy-proof for only one side of the market) and randomized serial dictatorship (strategy-proof but not stable)

    Market Design for Dynamic Pricing and Pooling in Capacitated Networks

    Full text link
    We study a market mechanism that sets edge prices to incentivize strategic agents to organize trips that efficiently share limited network capacity. This market allows agents to form groups to share trips, make decisions on departure times and route choices, and make payments to cover edge prices and other costs. We develop a new approach to analyze the existence and computation of market equilibrium, building on theories of combinatorial auctions and dynamic network flows. Our approach tackles the challenges in market equilibrium characterization arising from: (a) integer and network constraints on the dynamic flow of trips in sharing limited edge capacity; (b) heterogeneous and private preferences of strategic agents. We provide sufficient conditions on the network topology and agents' preferences that ensure the existence and polynomial-time computation of market equilibrium. We identify a particular market equilibrium that achieves maximum utilities for all agents, and is equivalent to the outcome of the classical Vickery Clark Grove mechanism. Finally, we extend our results to general networks with multiple populations and apply them to compute dynamic tolls for efficient carpooling in San Francisco Bay Area

    Data Market Design through Deep Learning

    Full text link
    The data market design\textit{data market design} problem is a problem in economic theory to find a set of signaling schemes (statistical experiments) to maximize expected revenue to the information seller, where each experiment reveals some of the information known to a seller and has a corresponding price [Bergemann et al., 2018]. Each buyer has their own decision to make in a world environment, and their subjective expected value for the information associated with a particular experiment comes from the improvement in this decision and depends on their prior and value for different outcomes. In a setting with multiple buyers, a buyer's expected value for an experiment may also depend on the information sold to others [Bonatti et al., 2022]. We introduce the application of deep learning for the design of revenue-optimal data markets, looking to expand the frontiers of what can be understood and achieved. Relative to earlier work on deep learning for auction design [D\"utting et al., 2023], we must learn signaling schemes rather than allocation rules and handle obedience constraints\textit{obedience constraints} −- these arising from modeling the downstream actions of buyers −- in addition to incentive constraints on bids. Our experiments demonstrate that this new deep learning framework can almost precisely replicate all known solutions from theory, expand to more complex settings, and be used to establish the optimality of new designs for data markets and make conjectures in regard to the structure of optimal designs

    Incentive-driven QoS in peer-to-peer overlays

    Get PDF
    A well known problem in peer-to-peer overlays is that no single entity has control over the software, hardware and configuration of peers. Thus, each peer can selfishly adapt its behaviour to maximise its benefit from the overlay. This thesis is concerned with the modelling and design of incentive mechanisms for QoS-overlays: resource allocation protocols that provide strategic peers with participation incentives, while at the same time optimising the performance of the peer-to-peer distribution overlay. The contributions of this thesis are as follows. First, we present PledgeRoute, a novel contribution accounting system that can be used, along with a set of reciprocity policies, as an incentive mechanism to encourage peers to contribute resources even when users are not actively consuming overlay services. This mechanism uses a decentralised credit network, is resilient to sybil attacks, and allows peers to achieve time and space deferred contribution reciprocity. Then, we present a novel, QoS-aware resource allocation model based on Vickrey auctions that uses PledgeRoute as a substrate. It acts as an incentive mechanism by providing efficient overlay construction, while at the same time allocating increasing service quality to those peers that contribute more to the network. The model is then applied to lagsensitive chunk swarming, and some of its properties are explored for different peer delay distributions. When considering QoS overlays deployed over the best-effort Internet, the quality received by a client cannot be adjudicated completely to either its serving peer or the intervening network between them. By drawing parallels between this situation and well-known hidden action situations in microeconomics, we propose a novel scheme to ensure adherence to advertised QoS levels. We then apply it to delay-sensitive chunk distribution overlays and present the optimal contract payments required, along with a method for QoS contract enforcement through reciprocative strategies. We also present a probabilistic model for application-layer delay as a function of the prevailing network conditions. Finally, we address the incentives of managed overlays, and the prediction of their behaviour. We propose two novel models of multihoming managed overlay incentives in which overlays can freely allocate their traffic flows between different ISPs. One is obtained by optimising an overlay utility function with desired properties, while the other is designed for data-driven least-squares fitting of the cross elasticity of demand. This last model is then used to solve for ISP profit maximisation

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore