170 research outputs found

    A Coq-based synthesis of Scala programs which are correct-by-construction

    Full text link
    The present paper introduces Scala-of-Coq, a new compiler that allows a Coq-based synthesis of Scala programs which are "correct-by-construction". A typical workflow features a user implementing a Coq functional program, proving this program's correctness with regards to its specification and making use of Scala-of-Coq to synthesize a Scala program that can seamlessly be integrated into an existing industrial Scala or Java application.Comment: 2 pages, accepted version of the paper as submitted to FTfJP 2017 (Formal Techniques for Java-like Programs), June 18-23, 2017, Barcelona , Spai

    Sawja: Static Analysis Workshop for Java

    Get PDF
    Static analysis is a powerful technique for automatic verification of programs but raises major engineering challenges when developing a full-fledged analyzer for a realistic language such as Java. This paper describes the Sawja library: a static analysis framework fully compliant with Java 6 which provides OCaml modules for efficiently manipulating Java bytecode programs. We present the main features of the library, including (i) efficient functional data-structures for representing program with implicit sharing and lazy parsing, (ii) an intermediate stack-less representation, and (iii) fast computation and manipulation of complete programs

    A formally verified compiler back-end

    Get PDF
    This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well

    TRX: A Formally Verified Parser Interpreter

    Full text link
    Parsing is an important problem in computer science and yet surprisingly little attention has been devoted to its formal verification. In this paper, we present TRX: a parser interpreter formally developed in the proof assistant Coq, capable of producing formally correct parsers. We are using parsing expression grammars (PEGs), a formalism essentially representing recursive descent parsing, which we consider an attractive alternative to context-free grammars (CFGs). From this formalization we can extract a parser for an arbitrary PEG grammar with the warranty of total correctness, i.e., the resulting parser is terminating and correct with respect to its grammar and the semantics of PEGs; both properties formally proven in Coq.Comment: 26 pages, LMC

    Work In Progress: Toward a Coq-certified Tool for the Schedulability Analysis of Tasks with Offsets

    Get PDF
    International audienceThis paper presents the first steps toward a formally proven tool for schedulability analysis of tasks with offsets. We formalize and verify the seminal response time analysis of Tindell by extending the Prosa proof library, which is based on the Coq proof assistant. Thanks to Coq’s extraction capabilities, this will allow us to easily obtain a certified analyzer. Additionally, we want to build a Coq certifier that can verify the correctness of results obtained using related (but uncertified), already existing analyzers. Our objective is to investigate the advantages and drawbacks of both approaches, namely the certified analysis and the certifier. The work described in this paper as well as its continuation is intended to enrich the Prosa library

    CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates

    Get PDF
    Termination is an important property of programs; notably required for programs formulated in proof assistants. It is a very active subject of research in the Turing-complete formalism of term rewriting systems, where many methods and tools have been developed over the years to address this problem. Ensuring reliability of those tools is therefore an important issue. In this paper we present a library formalizing important results of the theory of well-founded (rewrite) relations in the proof assistant Coq. We also present its application to the automated verification of termination certificates, as produced by termination tools

    Scade 6: from a Kahn Semantics to a Kahn Implementation for Multicore

    Get PDF
    International audienceSCADE is an environment for developing critical embedded software that is used for more than twenty years in various application domains like avionics, nuclear plants, transportation, automotive. It comes with a language and a code generator which complies with the highest safety standards like DO-178C, IEC 61508, EN 50128, IEC 60880 and ISO 26262. The language has been founded on the pioneering work by Caspi and Halbwachs on Lustre. In 2008, a major revision of the language and compiler, named 'Scade 6', was released. One of its novelty was a smooth integration of the traditional data-flow style of Lustre with control-structures inspired from those of Esterel and SyncCharts, with static/dynamic semantics and a compilation inspired from Lucid Synchrone. In particular, it relies on four dedicated type systems-typing, clock calculus, causality analysis, initialization analysis-and a compilation through source-to-source transformations into a minimal clocked data-flow language, based on a Kahn semantics, that is translated to imperative code. One ongoing work is the generation of code for multi-core architectures. Because of the intrinsic deterministic parallelism of Scade, we propose a solution that relies on annotations that specify what must be executed concurrently but do not change the semantics. The paper is a survey of past to ongoing work on Scade 6 language definition and implementation
    • …
    corecore