26 research outputs found

    Importing SMT and Connection proofs as expansion trees

    Get PDF
    Different automated theorem provers reason in various deductive systems and, thus, produce proof objects which are in general not compatible. To understand and analyze these objects, one needs to study the corresponding proof theory, and then study the language used to represent proofs, on a prover by prover basis. In this work we present an implementation that takes SMT and Connection proof objects from two different provers and imports them both as expansion trees. By representing the proofs in the same framework, all the algorithms and tools available for expansion trees (compression, visualization, sequent calculus proof construction, proof checking, etc.) can be employed uniformly. The expansion proofs can also be used as a validation tool for the proof objects produced.Comment: In Proceedings PxTP 2015, arXiv:1507.0837

    Towards the Integration of an Intuitionistic First-Order Prover into Coq

    Full text link
    An efficient intuitionistic first-order prover integrated into Coq is useful to replay proofs found by external automated theorem provers. We propose a two-phase approach: An intuitionistic prover generates a certificate based on the matrix characterization of intuitionistic first-order logic; the certificate is then translated into a sequent-style proof.Comment: In Proceedings HaTT 2016, arXiv:1606.0542

    A Deep Reinforcement Learning Approach to First-Order Logic Theorem Proving

    Full text link
    Automated theorem provers have traditionally relied on manually tuned heuristics to guide how they perform proof search. Deep reinforcement learning has been proposed as a way to obviate the need for such heuristics, however, its deployment in automated theorem proving remains a challenge. In this paper we introduce TRAIL, a system that applies deep reinforcement learning to saturation-based theorem proving. TRAIL leverages (a) a novel neural representation of the state of a theorem prover and (b) a novel characterization of the inference selection process in terms of an attention-based action policy. We show through systematic analysis that these mechanisms allow TRAIL to significantly outperform previous reinforcement-learning-based theorem provers on two benchmark datasets for first-order logic automated theorem proving (proving around 15% more theorems)

    Dedukti: a Logical Framework based on the λ\lambdaΠ\Pi-Calculus Modulo Theory

    Full text link
    Dedukti is a Logical Framework based on the λ\lambdaΠ\Pi-Calculus Modulo Theory. We show that many theories can be expressed in Dedukti: constructive and classical predicate logic, Simple type theory, programming languages, Pure type systems, the Calculus of inductive constructions with universes, etc. and that permits to used it to check large libraries of proofs developed in other proof systems: Zenon, iProver, FoCaLiZe, HOL Light, and Matita

    Scalable Fine-Grained Proofs for Formula Processing

    Get PDF
    We present a framework for processing formulas in automatic theorem provers, with generation of detailed proofs. The main components are a generic contextual recursion algorithm and an extensible set of inference rules. Clausification, skolemization, theory-specific simplifications, and expansion of 'let' expressions are instances of this framework. With suitable data structures, proof generation adds only a linear-time overhead, and proofs can be checked in linear time. We implemented the approach in the SMT solver veriT. This allowed us to dramatically simplify the code base while increasing the number of problems for which detailed proofs can be produced, which is important for independent checking and reconstruction in proof assistants
    corecore