301 research outputs found

    Advanced analytics through FPGA based query processing and deep reinforcement learning

    Get PDF
    Today, vast streams of structured and unstructured data have been incorporated in databases, and analytical processes are applied to discover patterns, correlations, trends and other useful relationships that help to take part in a broad range of decision-making processes. The amount of generated data has grown very large over the years, and conventional database processing methods from previous generations have not been sufficient to provide satisfactory results regarding analytics performance and prediction accuracy metrics. Thus, new methods are needed in a wide array of fields from computer architectures, storage systems, network design to statistics and physics. This thesis proposes two methods to address the current challenges and meet the future demands of advanced analytics. First, we present AxleDB, a Field Programmable Gate Array based query processing system which constitutes the frontend of an advanced analytics system. AxleDB melds highly-efficient accelerators with memory, storage and provides a unified programmable environment. AxleDB is capable of offloading complex Structured Query Language queries from host CPU. The experiments have shown that running a set of TPC-H queries, AxleDB can perform full queries between 1.8x and 34.2x faster and 2.8x to 62.1x more energy efficient compared to MonetDB, and PostgreSQL on a single workstation node. Second, we introduce TauRieL, a novel deep reinforcement learning (DRL) based method for combinatorial problems. The design idea behind combining DRL and combinatorial problems is to apply the prediction capabilities of deep reinforcement learning and to use the universality of combinatorial optimization problems to explore general purpose predictive methods. TauRieL utilizes an actor-critic inspired DRL architecture that adopts ordinary feedforward nets. Furthermore, TauRieL performs online training which unifies training and state space exploration. The experiments show that TauRieL can generate solutions two orders of magnitude faster and performs within 3% of accuracy compared to the state-of-the-art DRL on the Traveling Salesman Problem while searching for the shortest tour. Also, we present that TauRieL can be adapted to the Knapsack combinatorial problem. With a very minimal problem specific modification, TauRieL can outperform a Knapsack specific greedy heuristics.Hoy en día, se han incorporado grandes cantidades de datos estructurados y no estructurados en las bases de datos, y se les aplican procesos analíticos para descubrir patrones, correlaciones, tendencias y otras relaciones útiles que se utilizan mayormente para la toma de decisiones. La cantidad de datos generados ha crecido enormemente a lo largo de los años, y los métodos de procesamiento de bases de datos convencionales utilizados en las generaciones anteriores no son suficientes para proporcionar resultados satisfactorios respecto al rendimiento del análisis y respecto de la precisión de las predicciones. Por lo tanto, se necesitan nuevos métodos en una amplia gama de campos, desde arquitecturas de computadoras, sistemas de almacenamiento, diseño de redes hasta estadísticas y física. Esta tesis propone dos métodos para abordar los desafíos actuales y satisfacer las demandas futuras de análisis avanzado. Primero, presentamos AxleDB, un sistema de procesamiento de consultas basado en FPGAs (Field Programmable Gate Array) que constituye la interfaz de un sistema de análisis avanzado. AxleDB combina aceleradores altamente eficientes con memoria, almacenamiento y proporciona un entorno programable unificado. AxleDB es capaz de descargar consultas complejas de lenguaje de consulta estructurado desde la CPU del host. Los experimentos han demostrado que al ejecutar un conjunto de consultas TPC-H, AxleDB puede realizar consultas completas entre 1.8x y 34.2x más rápido y 2.8x a 62.1x más eficiente energéticamente que MonetDB, y PostgreSQL en un solo nodo de una estación de trabajo. En segundo lugar, presentamos TauRieL, un nuevo método basado en Deep Reinforcement Learning (DRL) para problemas combinatorios. La idea central que está detrás de la combinación de DRL y problemas combinatorios, es aplicar las capacidades de predicción del aprendizaje de refuerzo profundo y el uso de la universalidad de los problemas de optimización combinatoria para explorar métodos predictivos de propósito general. TauRieL utiliza una arquitectura DRL inspirada en el actor-crítico que se adapta a redes feedforward. Además, TauRieL realiza el entrenamieton en línea que unifica el entrenamiento y la exploración espacial de los estados. Los experimentos muestran que TauRieL puede generar soluciones dos órdenes de magnitud más rápido y funciona con un 3% de precisión en comparación con el estado del arte en DRL aplicado al problema del viajante mientras busca el recorrido más corto. Además, presentamos que TauRieL puede adaptarse al problema de la Mochila. Con una modificación específica muy mínima del problema, TauRieL puede superar a una heurística codiciosa de Knapsack Problem.Postprint (published version

    Minimizing current effects on autonomous surface craft operations in Singapore harbor

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 99-102).The nation of Singapore is seeking new ways to adapt to its rapid growth. With the help of researchers and staff at the Singapore-MIT Alliance for Research and Technology (SMART), numerous data collection and analysis efforts are underway. One such effort involves the harbor where operations and oceanographic data collection missions are being completed using various sensors and autonomous systems. Utilizing Autonomous Surface Crafts (ASCs) to collect data is one such method and provides a level of robustness unachievable by humans. To improve these operations we seek to address the issue of efficiency in an environment containing surface waves, strong winds, and multiple current shears. In this thesis we present two new heading control algorithms for ASCs under the influence of currents. The first, Cross-Track Error Minimization, ensures that the vehicle follows a straight-line trajectory between two waypoints under the effects of surface waves and currents. The second controller, Time-Optimal, uses Zermelo's problem and function minimization to find the time-optimal trajectory between two waypoints using a known current field. We further define near-time-optimal paths covering a set of waypoints by defining an asymmetric Traveling Salesman Problem (TSP) where the graph nodes are the waypoints and the edges are the corresponding travel times between the waypoints. Tour construction and local search heuristics are then utilized to build near time-optimal paths. These new paths show a potential time savings of 89% leading to overall mission efficiency.by Lynn M. Sarcione.S.M

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Near-Optimal Coverage Path Planning with Turn Costs

    Full text link
    Coverage path planning is a fundamental challenge in robotics, with diverse applications in aerial surveillance, manufacturing, cleaning, inspection, agriculture, and more. The main objective is to devise a trajectory for an agent that efficiently covers a given area, while minimizing time or energy consumption. Existing practical approaches often lack a solid theoretical foundation, relying on purely heuristic methods, or overly abstracting the problem to a simple Traveling Salesman Problem in Grid Graphs. Moreover, the considered cost functions only rarely consider turn cost, prize-collecting variants for uneven cover demand, or arbitrary geometric regions. In this paper, we describe an array of systematic methods for handling arbitrary meshes derived from intricate, polygonal environments. This adaptation paves the way to compute efficient coverage paths with a robust theoretical foundation for real-world robotic applications. Through comprehensive evaluations, we demonstrate that the algorithm also exhibits low optimality gaps, while efficiently handling complex environments. Furthermore, we showcase its versatility in handling partial coverage and accommodating heterogeneous passage costs, offering the flexibility to trade off coverage quality and time efficiency

    Column generation algorithms for exact modularity maximization in networks

    No full text
    International audienceFinding modules, or clusters, in networks currently attracts much attention in several domains. The most studied criterion for doing so, due to Newman and Girvan [Phys. Rev. E 69, 026113 (2004)], is modularity maximization. Many heuristics have been proposed for maximizing modularity and yield rapidly near optimal solution or sometimes optimal ones but without a guarantee of optimality. There are few exact algorithms, prominent among which is a paper by Xu et al. [Eur. Phys. J. B 60, 231 (2007)]. Modularity maximization can also be expressed as a clique partitioning problem and the row generation algorithm of Grötschel and Wakabayashi [Math. Program. 45, 59 (1989)] applied. We propose to extend both of these algorithms using the powerful column generation methods for linear and non linear integer programming. Performance of the four resulting algorithms is compared on problems from the literature. Instances with up to 512 entities are solved exactly. Moreover, the computing time of previously solved problems are reduced substantially

    Advanced analytics through FPGA based query processing and deep reinforcement learning

    Get PDF
    Today, vast streams of structured and unstructured data have been incorporated in databases, and analytical processes are applied to discover patterns, correlations, trends and other useful relationships that help to take part in a broad range of decision-making processes. The amount of generated data has grown very large over the years, and conventional database processing methods from previous generations have not been sufficient to provide satisfactory results regarding analytics performance and prediction accuracy metrics. Thus, new methods are needed in a wide array of fields from computer architectures, storage systems, network design to statistics and physics. This thesis proposes two methods to address the current challenges and meet the future demands of advanced analytics. First, we present AxleDB, a Field Programmable Gate Array based query processing system which constitutes the frontend of an advanced analytics system. AxleDB melds highly-efficient accelerators with memory, storage and provides a unified programmable environment. AxleDB is capable of offloading complex Structured Query Language queries from host CPU. The experiments have shown that running a set of TPC-H queries, AxleDB can perform full queries between 1.8x and 34.2x faster and 2.8x to 62.1x more energy efficient compared to MonetDB, and PostgreSQL on a single workstation node. Second, we introduce TauRieL, a novel deep reinforcement learning (DRL) based method for combinatorial problems. The design idea behind combining DRL and combinatorial problems is to apply the prediction capabilities of deep reinforcement learning and to use the universality of combinatorial optimization problems to explore general purpose predictive methods. TauRieL utilizes an actor-critic inspired DRL architecture that adopts ordinary feedforward nets. Furthermore, TauRieL performs online training which unifies training and state space exploration. The experiments show that TauRieL can generate solutions two orders of magnitude faster and performs within 3% of accuracy compared to the state-of-the-art DRL on the Traveling Salesman Problem while searching for the shortest tour. Also, we present that TauRieL can be adapted to the Knapsack combinatorial problem. With a very minimal problem specific modification, TauRieL can outperform a Knapsack specific greedy heuristics.Hoy en día, se han incorporado grandes cantidades de datos estructurados y no estructurados en las bases de datos, y se les aplican procesos analíticos para descubrir patrones, correlaciones, tendencias y otras relaciones útiles que se utilizan mayormente para la toma de decisiones. La cantidad de datos generados ha crecido enormemente a lo largo de los años, y los métodos de procesamiento de bases de datos convencionales utilizados en las generaciones anteriores no son suficientes para proporcionar resultados satisfactorios respecto al rendimiento del análisis y respecto de la precisión de las predicciones. Por lo tanto, se necesitan nuevos métodos en una amplia gama de campos, desde arquitecturas de computadoras, sistemas de almacenamiento, diseño de redes hasta estadísticas y física. Esta tesis propone dos métodos para abordar los desafíos actuales y satisfacer las demandas futuras de análisis avanzado. Primero, presentamos AxleDB, un sistema de procesamiento de consultas basado en FPGAs (Field Programmable Gate Array) que constituye la interfaz de un sistema de análisis avanzado. AxleDB combina aceleradores altamente eficientes con memoria, almacenamiento y proporciona un entorno programable unificado. AxleDB es capaz de descargar consultas complejas de lenguaje de consulta estructurado desde la CPU del host. Los experimentos han demostrado que al ejecutar un conjunto de consultas TPC-H, AxleDB puede realizar consultas completas entre 1.8x y 34.2x más rápido y 2.8x a 62.1x más eficiente energéticamente que MonetDB, y PostgreSQL en un solo nodo de una estación de trabajo. En segundo lugar, presentamos TauRieL, un nuevo método basado en Deep Reinforcement Learning (DRL) para problemas combinatorios. La idea central que está detrás de la combinación de DRL y problemas combinatorios, es aplicar las capacidades de predicción del aprendizaje de refuerzo profundo y el uso de la universalidad de los problemas de optimización combinatoria para explorar métodos predictivos de propósito general. TauRieL utiliza una arquitectura DRL inspirada en el actor-crítico que se adapta a redes feedforward. Además, TauRieL realiza el entrenamieton en línea que unifica el entrenamiento y la exploración espacial de los estados. Los experimentos muestran que TauRieL puede generar soluciones dos órdenes de magnitud más rápido y funciona con un 3% de precisión en comparación con el estado del arte en DRL aplicado al problema del viajante mientras busca el recorrido más corto. Además, presentamos que TauRieL puede adaptarse al problema de la Mochila. Con una modificación específica muy mínima del problema, TauRieL puede superar a una heurística codiciosa de Knapsack Problem

    Optimization as an analysis tool for human complex decision making

    Get PDF
    We present a problem class of mixed-integer nonlinear programs (MINLPs) with nonconvex continuous relaxations which stem from economic test scenarios that are used in the analysis of human complex problem solving. In a round-based scenario participants hold an executive function. A posteriori a performance indicator is calculated and correlated to personal measures such as intelligence, working memory, or emotion regulation. Altogether, we investigate 2088 optimization problems that differ in size and initial conditions, based on real-world experimental data from 12 rounds of 174 participants. The goals are twofold. First, from the optimal solutions we gain additional insight into a complex system, which facilitates the analysis of a participant’s performance in the test. Second, we propose a methodology to automatize this process by providing a new criterion based on the solution of a series of optimization problems. By providing a mathematical optimization model and this methodology, we disprove the assumption that the “fruit fly of complex problem solving,” the Tailorshop scenario that has been used for dozens of published studies, is not mathematically accessible—although it turns out to be extremely challenging even for advanced state-of-the-art global optimization algorithms and we were not able to solve all instances to global optimality in reasonable time in this study. The publicly available computational tool Tobago [TOBAGO web site https://sourceforge.net/projects/tobago] can be used to automatically generate problem instances of various complexity, contains interfaces to AMPL and GAMS, and is hence ideally suited as a testbed for different kinds of algorithms and solvers. Computational practice is reported with respect to the influence of integer variables, problem dimension, and local versus global optimization with different optimization codes

    Effects of distribution planning systems on the cost of delivery in unique make-to-order manufacturing

    Get PDF
    This thesis investigates the effects of simulation through the use of a distribution planning system (DPS) on distribution costs in the setting of unique make-to-order manufacturers (UMTO). In doing so, the German kitchen furniture industry (GKFI) serves as an example and supplier of primary data. On the basis of a detailed market analysis this thesis will demonstrate that this industry, which mostly works with its own vehicles for transport, is in urgent need of innovative logistics strategies. Within the scope of an investigation into the current practical and theoretical use of DPS, it will become apparent that most known DPS are based on the application of given or set delivery tour constraints. Those constraints are often not questioned in practice and in theory nor even attempted to be omitted, but are accepted in day-to-day operation. This paper applies a different approach. In the context of this research, a practically applied DPS is used supportively for the removal of time window constraints (TWC) in UMTO delivery. The same DPS is used in ceteris paribus condition for the re-routing of deliveries and hereby supports the findings regarding the costliness of TWC. From this experiment emerges an overall cost saving of 50.9% and a 43.5% reduction of kilometres travelled. The applied experimental research methodology and the significance of the resulting savings deliver the opportunity to analyse the removal of delivery time window restrictions as one of many constraints in distribution logistics. The economic results of this thesis may become the basis of discussion for further research based on the applied methodology. From a practical point of view, the contributions to new knowledge are the cost savings versus the change of demand for the setting of TWC between the receiver of goods and the UMTO supplier. On the side of theoretical knowledge, this thesis contributes to filling the gap on the production – distribution problem from a UMTO perspective. Further contributions to knowledge are delivered through the experimental methodology with the application of a DPS for research in logistics simulation

    Towards Visualization of Discrete Optimization Problems and Search Algorithms

    Get PDF
    Diskrete Optimierung beschäftigt sich mit dem Identifizieren einer Kombination oder Permutation von Elementen, die im Hinblick auf ein gegebenes quantitatives Kriterium optimal ist. Anwendungen dafür entstehen aus Problemen in der Wirtschaft, der industriellen Fertigung, den Ingenieursdisziplinen, der Mathematik und Informatik. Dazu gehören unter anderem maschinelles Lernen, die Planung der Reihenfolge und Terminierung von Fertigungsprozessen oder das Layout von integrierten Schaltkreisen. Häufig sind diskrete Optimierungsprobleme NP-hart. Dadurch kommt der Erforschung effizienter, heuristischer Suchalgorithmen eine große Bedeutung zu, um für mittlere und große Probleminstanzen überhaupt gute Lösungen finden zu können. Dabei wird die Entwicklung von Algorithmen dadurch erschwert, dass Eigenschaften der Probleminstanzen aufgrund von deren Größe und Komplexität häufig schwer zu identifizieren sind. Ebenso herausfordernd ist die Analyse und Evaluierung von gegebenen Algorithmen, da das Suchverhalten häufig schwer zu charakterisieren ist. Das trifft besonders im Fall von emergentem Verhalten zu, wie es in der Forschung der Schwarmintelligenz vorkommt. Visualisierung zielt auf das Nutzen des menschlichen Sehens zur Datenverarbeitung ab. Das Gehirn hat enorme Fähigkeiten optische Reize von den Sehnerven zu analysieren, Formen und Muster darin zu erkennen, ihnen Bedeutung zu verleihen und dadurch ein intuitives Verstehen des Gesehenen zu ermöglichen. Diese Fähigkeit kann im Speziellen genutzt werden, um Hypothesen über komplexe Daten zu generieren, indem man sie in einem Bild repräsentiert und so dem visuellen System des Betrachters zugänglich macht. Bisher wurde Visualisierung kaum genutzt um speziell die Forschung in diskreter Optimierung zu unterstützen. Mit dieser Dissertation soll ein Ausgangspunkt geschaffen werden, um den vermehrten Einsatz von Visualisierung bei der Entwicklung von Suchheuristiken zu ermöglichen. Dazu werden zunächst die zentralen Fragen in der Algorithmenentwicklung diskutiert und daraus folgende Anforderungen an Visualisierungssysteme abgeleitet. Mögliche Forschungsrichtungen in der Visualisierung, die konkreten Nutzen für die Forschung in der Optimierung ergeben, werden vorgestellt. Darauf aufbauend werden drei Visualisierungssysteme und eine Analysemethode für die Erforschung diskreter Suche vorgestellt. Drei wichtige Aufgaben von Algorithmendesignern werden dabei adressiert. Zunächst wird ein System für den detaillierten Vergleich von Algorithmen vorgestellt. Auf der Basis von Zwischenergebnissen der Algorithmen auf einer Probleminstanz wird der Suchverlauf der Algorithmen dargestellt. Der Fokus liegt dabei dem Verlauf der Qualität der Lösungen über die Zeit, wobei die Darstellung durch den Experten mit zusätzlichem Wissen oder Klassifizierungen angereichert werden kann. Als zweites wird ein System für die Analyse von Suchlandschaften vorgestellt. Auf Basis von Pfaden und Abständen in der Landschaft wird eine Karte der Probleminstanz gezeichnet, die strukturelle Merkmale intuitiv erfassbar macht. Der zweite Teil der Dissertation beschäftigt sich mit der topologischen Analyse von Suchlandschaften, aufbauend auf einer Schwellwertanalyse. Ein Visualisierungssystem wird vorgestellt, dass ein topologisch equivalentes Höhenprofil der Suchlandschaft darstellt, um die topologische Struktur begreifbar zu machen. Dieses System ermöglicht zudem, den Suchverlauf eines Algorithmus direkt in der Suchlandschaft zu beobachten, was insbesondere bei der Untersuchung von Schwarmintelligenzalgorithmen interessant ist. Die Berechnung der topologischen Struktur setzt eine vollständige Aufzählung aller Lösungen voraus, was aufgrund der Größe der Suchlandschaften im allgemeinen nicht möglich ist. Um eine Anwendbarkeit der Analyse auf größere Probleminstanzen zu ermöglichen, wird eine Methode zur Abschätzung der Topologie vorgestellt. Die Methode erlaubt eine schrittweise Verfeinerung der topologischen Struktur und lässt sich heuristisch steuern. Dadurch können Wissen und Hypothesen des Experten einfließen um eine möglichst hohe Qualität der Annäherung zu erreichen bei gleichzeitig überschaubarem Berechnungsaufwand.Discrete optimization deals with the identification of combinations or permutations of elements that are optimal with regard to a specific, quantitative criterion. Applications arise from problems in economy, manufacturing, engineering, mathematics and computer sciences. Among them are machine learning, scheduling of production processes, and the layout of integrated electrical circuits. Typically, discrete optimization problems are NP hard. Thus, the investigation of efficient, heuristic search algorithms is of high relevance in order to find good solutions for medium- and large-sized problem instances, at all. The development of such algorithms is complicated, because the properties of problem instances are often hard to identify due to the size and complexity of the instances. Likewise, the analysis and evaluation of given algorithms is challenging, because the search behavior of an algorithm is hard to characterize, especially in case of emergent behavior as investigated in swarm intelligence research. Visualization targets taking advantage of human vision in order to do data processing. The visual brain possesses tremendous capabilities to analyse optical stimulation through the visual nerves, perceive shapes and patterns, assign meaning to them and thus facilitate an intuitive understanding of the seen. In particular, this can be used to generate hypotheses about complex data by representing them in a well-designed depiction and making it accessible to the visual system of the viewer. So far, there is only little use of visualization to support the discrete optimization research. This thesis is meant as a starting point to allow for an increased application of visualization throughout the process of developing discrete search heuristics. For this, we discuss the central questions that arise from the development of heuristics as well as the resulting requirements on visualization systems. Possible directions of research for visualization are described that yield a specific benefit for optimization research. Based on this, three visualization systems and one analysis method are presented. These address three important tasks of algorithm designers. First, a system for the fine-grained comparison of algorithms is introduced. Based on the intermediate results of algorithm runs on a given problem instance the search process is visualized. The focus is on the progress of the solution quality over time while allowing the algorithm expert to augment the depiction with additional domain knowledge and classification of individual solutions. Second, a system for the analysis of search landscapes is presented. Based on paths and distances in the landscape, a map of the problem instance is drawn that facilitates an intuitive cognition of structural properties. The second part of this thesis focuses on the topological analysis of search landscapes, based on barriers. A visualization system is presented that shows a topological equivalent height profile of the search landscape. Further, the system facilitates to observe the search process of an algorithm directly within the search landscape. This is of particular interest when researching swarm intelligence algorithms. The computation of topological structure requires a complete enumeration of all solutions which is not possible in the general case due to the size of the search landscapes. In order to enable an application to larger problem instances, we introduce a method to approximate the topological structure. The method allows for an incremental refinement of the topological approximation that can be controlled using a heuristic. Thus, the domain expert can introduce her knowledge and also hypotheses about the problem instance into the analysis so that an approximation of good quality is achieved with reasonable computational effort
    corecore