57 research outputs found

    Certificateless Signature Scheme Based on Rabin Algorithm and Discrete Logarithm

    Get PDF
    Certificateless signature can effectively immue the key escrow problem in the identity-based signature scheme. But the security of the most certificateless signatures usually depends on only one mathematical hard problem, which makes the signature vulnerable when the underlying hard problem has been broken. In order to strengthen the security, in this paper, a certificateless signature whose security depends on two mathematical hard problems, discrete logarithm and factoring problems, is proposed. Then, the proposed certificateless signature can be proved secure in the random oracle, and only both of the two mathematical hard problems are solved, can the proposed signature be broken. As a consequence, the proposed certificateless signature is more secure than the previous signatures. On the other hand, with the pre-computation of the exponential modular computation, it will save more time in the signature signing phase. And compared with the other schemes of this kind, the proposed scheme is more efficient

    A Certificateless One-Way Group Key Agreement Protocol for End-to-End Email Encryption

    Get PDF
    Over the years, email has evolved into one of the most widely used communication channels for both individuals and organizations. However, despite near ubiquitous use in much of the world, current information technology standards do not place emphasis on email security. Not until recently, webmail services such as Yahoo\u27s mail and Google\u27s gmail started to encrypt emails for privacy protection. However, the encrypted emails will be decrypted and stored in the service provider\u27s servers. If the servers are malicious or compromised, all the stored emails can be read, copied and altered. Thus, there is a strong need for end-to-end (E2E) email encryption to protect email user\u27s privacy. In this paper, we present a certificateless one-way group key agreement protocol with the following features, which are suitable to implement E2E email encryption: (1) certificateless and thus there is no key escrow problem and no public key certificate infrastructure is required; (2) one-way group key agreement and thus no back-and-forth message exchange is required; and (3) n-party group key agreement (not just 2- or 3-party). This paper also provides a security proof for the proposed protocol using proof by simulation . Finally, efficiency analysis of the protocol is presented at the end of the paper

    Certificateless Blind Signature Based on DLP

    Get PDF
    The most widely used digital signature in the real word application such as e cash e-voting etc. is blind signature. Previously the proposed blind signature follow the foot steps of public key cryptography(PKC) but conventional public key cryptography uses an affirmation of a relationship between public key and identity for the holder of the corresponding private key to the user, so certificate management is very difficult. To overcome this problem Identity based cryptography is introduced. But Identity based cryptography is inherited with key escrow problem. Blind signature with certificateless PKC(CLBS) used widely because it eliminate the problem related to certificate management of cryptography and the key escrow problem of ID based PKC. Because of large requirement of CLBS scheme in different applications many CLBS scheme is proposed, but they were based on bilinear pairing. However, the CLBS scheme based on bilinear pairing is not very satisfiable because bilinear pairing operations are very complicated. In our proposed scheme, we designed a certificateless blind signature scheme based on the discrete logarithmic problem. The proposed scheme fulfills all the security requirements of blind signature as well as certificateless signature. We analyzed security properties such as blindness, unforgeability and unlinkability. The proposed scheme has less computational cost. The hardness of discrete logarithmic problem (DLP) is used to prove the security of the proposed scheme

    Certificateless Proxy Signature from RSA

    Get PDF
    Although some good results were achieved in speeding up the computation of pairing function in recent years, it is still interesting to design efficient cryptosystems with less bilinear pairing operation. A proxy signature scheme allows a proxy signer to sign messages on behalf of an original signer within a given context. We propose a certificateless proxy signature (CLPS) scheme from RSA and prove its security under the strongest security model where the Type I/II adversary is a super Type I/II adversary

    A Certificateless One-Way Group Key Agreement Protocol for Point-to-Point Email Encryption

    Get PDF
    Over the years, email has evolved and grown to one of the most widely used form of communication between individuals and organizations. Nonetheless, the current information technology standards do not value the significance of email security in today\u27s technologically advanced world. Not until recently, email services such as Yahoo and Google started to encrypt emails for privacy protection. Despite that, the encrypted emails will be decrypted and stored in the email service provider\u27s servers as backup. If the server is hacked or compromised, it can lead to leakage and modification of one\u27s email. Therefore, there is a strong need for point-to-point (P2P) email encryption to protect email user\u27s privacy. P2P email encryption schemes strongly rely on the underlying Public Key Cryptosystems (PKC). The evolution of the public key cryptography from the traditional PKC to the Identity-based PKC (ID-PKC) and then to the Certificateless PKC (CL-PKC) provides a better and more suitable cryptosystem to implement P2P email encryption. Many current public-key based cryptographic protocols either suffer from the expensive public-key certificate infrastructure (in traditional PKC) or the key escrow problem (in ID-PKC). CL-PKC is a relatively new cryptosystem that was designed to overcome both problems. In this thesis, we present a CL-PKC group key agreement protocol, which is, as the author\u27s knowledge, the first one with all the following features in one protocol: (1) certificateless and thus there is no key escrow problem and no public key certificate infrastructure is required. (2) one-way group key agreement and thus no back-and-forth message exchange is required; (3) n-party group key agreement (not just 2- or 3-party); and (4) no secret channel is required for key distribution. With the above features, P2P email encryption can be implemented securely and efficiently. This thesis provides a security proof for the proposed protocol using ``proof by simulation\u27\u27. Efficiency analysis of the protocol is also presented in this thesis. In addition, we have implemented the prototypes (email encryption systems) in two different scenarios in this thesis

    Analysis and improvement of a certificateless proxy blind signature

    Get PDF
    通过对葛荣亮等人提出的无证书代理盲签名方案进行分析,从中发现该方案会引起公钥替换攻击和恶意但是被动的kgC攻击。为了解决此方案的安全性缺陷,提出了一种改进方案。分析表明,改进的新方案满足无证书代理盲签名方案的所有安全性要求,并且拥有与原方案相同的计算效率。Through the cryptanalysis of a certificateless proxy blind signature scheme proposed by Ge Rong-liang,it find that this scheme can cause the public replacement attack and malicious-but-passive KGC attack.To avoid these attacks,this paper proposed a new improved scheme.Analysis result shows that the new improved shceme satisfies the requirements of proxy blind signature scheme and has the same computational efficiency compared with the original scheme.国家自然科学基金资助项目(11261060); 福建省自然科学基金资助项目(2012J01022); 新疆研究生科研创新资助项目(XJGRI2013130

    Digital Rights Management - Current Status and Future Trends

    Get PDF

    Identity-Based Blind Signature Scheme with Message Recovery

    Get PDF
    Blind signature allows a user to obtain a signature on a message without revealing anything about the message to the signer. Blind signatures play an important role in many real world applications such as e-voting, e-cash system where anonymity is of great concern. Due to the rapid growth in popularity of both wireless communications and mobile devices, the design of secure schemes with low-bandwidth capability is an important research issue. In this paper, we present a new blind signature scheme with message recovery in the ID-based setting using bilinear pairings over elliptic curves. The proposed scheme is unforgeable with the assumption that the Computational Diffie-Hellman problem is hard. We compare our scheme with the related schemes in terms of computational and communicational point of view

    A Novel Identity Based Blind Signature Scheme using DLP for E-Commerce

    Get PDF
    Abstract— Blind signatures are used in the most of the application where confidentiality and authenticity are the main issue. Blind signature scheme deals with concept where requester sends the request that the signer should sign on a blind message without looking at the content. Many ID based blind signature are proposed using bilinear pairings and elliptic curve. But the relative computation cost of the pairing in bilinear pairings and ID map into an elliptic curve are huge. In order to save the running time and the size of the signature, this paper proposed a scheme having the property of both concepts identity based blind signature that is based on Discrete Logarithm Problem, so as we know that DLP is a computational hard problem and hence the proposed scheme achieves all essential and secondary security prematurity. With the help of the proposed scheme, this paper implemented an E-commerce system in a secure way. E-commerce is one of the most concern applications of ID based blind signature scheme. E-commerce consisting selling and buying of products or services over the internet and open network. ID based blind signature scheme basically has been used enormously as a part of today’s focussed business. Our proposed scheme can be also be used in E-business, E-voting and E-cashing anywhere without any restriction DOI: 10.17762/ijritcc2321-8169.15060

    Efficient and provably-secure certificateless signature scheme without bilinear pairings

    Get PDF
    Many certificateless signature schemes using bilinear pairings have been proposed. But the relative computation cost of the pairing is approximately twenty times higher than that of the scalar multiplication over elliptic curve group. In order to improve the performance we propose a certificateless signature scheme without bilinear pairings. With the running time being saved greatly, our scheme is more practical than the previous related schemes for practical application
    corecore