9 research outputs found

    Swarm of UAVs for Network Management in 6G: A Technical Review

    Full text link
    Fifth-generation (5G) cellular networks have led to the implementation of beyond 5G (B5G) networks, which are capable of incorporating autonomous services to swarm of unmanned aerial vehicles (UAVs). They provide capacity expansion strategies to address massive connectivity issues and guarantee ultra-high throughput and low latency, especially in extreme or emergency situations where network density, bandwidth, and traffic patterns fluctuate. On the one hand, 6G technology integrates AI/ML, IoT, and blockchain to establish ultra-reliable, intelligent, secure, and ubiquitous UAV networks. 6G networks, on the other hand, rely on new enabling technologies such as air interface and transmission technologies, as well as a unique network design, posing new challenges for the swarm of UAVs. Keeping these challenges in mind, this article focuses on the security and privacy, intelligence, and energy-efficiency issues faced by swarms of UAVs operating in 6G mobile networks. In this state-of-the-art review, we integrated blockchain and AI/ML with UAV networks utilizing the 6G ecosystem. The key findings are then presented, and potential research challenges are identified. We conclude the review by shedding light on future research in this emerging field of research.Comment: 19,

    Distributed Trust Management in Grid Computing Environments

    Get PDF
    Grid computing environments are open distributed systems in which autonomous participants collaborate with each other using specific mechanisms and protocols. In general, the participants have different aims and objectives, can join and leave the Grid environment any time, have different capabilities for offering services, and often do not have sufficient knowledge about their collaboration partners. As a result, it is quite difficult to rely on the outcome of the collaboration process. Furthermore, the overall decision whether to rely at all on a collaboration partner or not may be affected by other non-functional aspects that cannot be generally determined for every possible situation, but should rather be under the control of the user when requesting such a decision. In this thesis, the idea that trust is the major requirement for enabling collaboration among partners in Grid environments is investigated. The probability for a successful future interaction among partners is considered as closely related to the mutual trust values the partners assign to each other. Thus, the level of trust represents the level of intention of Grid participants to collaborate. Trust is classified into two categories: identity trust and behavior trust. Identity trust is concerned with verifying the authenticity of an interaction partner, whereas behavior trust deals with the trustworthiness of an interaction partner. In order to calculate the identity trust, a "small-worlds"-like scheme is proposed. The overall behavior trust of an interaction partner is built up by considering several factors, such as accuracy or reliability. These factors of behavior trust are continuously tested and verified. In this way, a history of past collaborations that is used for future decisions on further collaborations between collaboration partners is collected. This kind of experience is also shared as recommendations to other participants. An interesting problem analysed is the difficulty of discovering the "real" behavior of an interaction partner from the "observed" behavior. If there are behavioral deviations, then it is not clear under what circumstances the deviating behavior of a partner is going to be tolerated. Issues involved in managing behavior trust of Grid participants are investigated and an approach based on the idea of using statistical methods of quality assurance for identifying the "real" behavior of a participant during an interaction and for "keeping" the behavior of the participants "in-control" is proposed. Another problem addressed is the security in Grid environments. Grids are designed to provide access and control over enormous remote computational resources, storage devices and scientific instruments. The information exchanged, saved or processed can be quite valuable and thus, a Grid is an attractive target for attacks to extract this information. Here, the confidentiality of the communication between Grid participants, together with issues related to authorization, integrity, management and non-repudiation are considered. A hybrid message level encryption scheme for securing the communication between Grid participants is proposed. It is based on a combination of two asymmetric cryptographic techniques, a variant of Public Key Infrastructure (PKI) and Certificateless Public Key Cryptography (CL-PKC). The different methods to trust management are implemented on a simulation infrastructure. The proposed system architecture can be configured to the domain specific trust requirements by the use of several separate trust profiles covering the entire lifecycle of trust establishment and management. Different experiments illustrate further how Grid participants can build, manage and evolve trust between them in order to have a successful collaboration. Although the approach is basically conceived for Grid environments, it is generic enough to be used for establishing and managing trust in many Grid-like distributed environments

    Smart cities: Advances in research—An information systems perspective

    Get PDF
    YesSmart cities employ information and communication technologies to improve: the quality of life for its citizens, the local economy, transport, traffic management, environment, and interaction with government. Due to the relevance of smart cities (also referred using other related terms such as Digital City, Information City, Intelligent City, Knowledge-based City, Ubiquitous City, Wired City) to various stakeholders and the benefits and challenges associated with its implementation, the concept of smart cities has attracted significant attention from researchers within multiple fields, including information systems. This study provides a valuable synthesis of the relevant literature by analysing and discussing the key findings from existing research on issues related to smart cities from an Information Systems perspective. The research analysed and discussed in this study focuses on number of aspects of smart cities: smart mobility, smart living, smart environment, smart citizens, smart government, and smart architecture as well as related technologies and concepts. The discussion also focusses on the alignment of smart cities with the UN sustainable development goals. This comprehensive review offers critical insight to the key underlying research themes within smart cities, highlighting the limitations of current developments and potential future directions

    The Proceedings of the 23rd Annual International Conference on Digital Government Research (DGO2022) Intelligent Technologies, Governments and Citizens June 15-17, 2022

    Get PDF
    The 23rd Annual International Conference on Digital Government Research theme is “Intelligent Technologies, Governments and Citizens”. Data and computational algorithms make systems smarter, but should result in smarter government and citizens. Intelligence and smartness affect all kinds of public values - such as fairness, inclusion, equity, transparency, privacy, security, trust, etc., and is not well-understood. These technologies provide immense opportunities and should be used in the light of public values. Society and technology co-evolve and we are looking for new ways to balance between them. Specifically, the conference aims to advance research and practice in this field. The keynotes, presentations, posters and workshops show that the conference theme is very well-chosen and more actual than ever. The challenges posed by new technology have underscored the need to grasp the potential. Digital government brings into focus the realization of public values to improve our society at all levels of government. The conference again shows the importance of the digital government society, which brings together scholars in this field. Dg.o 2022 is fully online and enables to connect to scholars and practitioners around the globe and facilitate global conversations and exchanges via the use of digital technologies. This conference is primarily a live conference for full engagement, keynotes, presentations of research papers, workshops, panels and posters and provides engaging exchange throughout the entire duration of the conference
    corecore