1,695 research outputs found

    Dependable and Certifiable Real-World Systems – Issue of Software Engineering Education

    Get PDF
    Embedded software and dedicated hardware are vital elements of the modern world, from personal electronics to transportation, from communication to aerospace, from military to gaming, from medical systems to banking. Combinations of even minor hardware or software defects in a complex system may lead to violation of safety with or even without evident system failure, a major problem that the computing profession faces is the lack of a universal approach to unite the dissimilar viewpoints presented by computer science, with its discrete and mathematical underpinnings, and by computer engineering, which focuses on building real systems and considering spatial and material constraints of space, energy, and time. Modern embedded systems include both viewpoints: microprocessors running software and programmable electronic hardware created with an extensive use of software. The gap between science and engineering approaches is clearly visible in engineering education. This survey paper focuses on exploring the commonalities between building software and building hardware in an attempt to establish a new framework for rejuvenating computing education, specifically software engineering for dependable systems. We present here a perspective on software/hardware relationship, aviation system certification, role of software engineering education, and future directions in computing

    A primal-dual formulation for certifiable computations in Schubert calculus

    Full text link
    Formulating a Schubert problem as the solutions to a system of equations in either Pl\"ucker space or in the local coordinates of a Schubert cell typically involves more equations than variables. We present a novel primal-dual formulation of any Schubert problem on a Grassmannian or flag manifold as a system of bilinear equations with the same number of equations as variables. This formulation enables numerical computations in the Schubert calculus to be certified using algorithms based on Smale's \alpha-theory.Comment: 21 page

    A component-based framework for certification of components in a cloud of HPC services

    Get PDF
    HPC Shelfis a proposal of a cloud computing platform to provide component-oriented services for High Performance Computing (HPC) applications. This paper presents a Verification-as-a-Service (VaaS) framework for component certification onHPC Shelf. Certification is aimed at providing higher confidence that components of parallel computing systems ofHPC Shelfbehave as expected according to one or more requirements expressed in their contracts. To this end, new abstractions are introduced, starting with certifier components. They are designed to inspect other components and verify them for different types of functional, non-functional and behavioral requirements. The certification framework is naturally based on parallel computing techniques to speed up verification tasks.NORTE-01-0145- FEDER-000037
    • …
    corecore