18 research outputs found

    Decision Making Based on Valued Fuzzy Superhypergraphs

    Get PDF
    This paper explores the defects in fuzzy (hyper) graphs (as complex (hyper) networks) and extends the fuzzy (hyper) graphs to fuzzy (quasi) superhypergraphs as a new concept.We have modeled the fuzzy superhypergraphs as complex superhypernetworks in order to make a relation between labeled objects in the form of details and generalities. Indeed, the structure of fuzzy (quasi) superhypergraphs collects groups of labeled objects and analyzes them in the form of the part to part of objects, the part of objects to the whole group of objects, and the whole to the whole group of objects at the same time. We have investigated the properties of fuzzy (quasi) superhypergraphs based on any positive real number as valued fuzzy (quasi) superhypergraphs, considering the complement of valued fuzzy (quasi) superhypergraphs, the notation of isomorphism of valued fuzzy (quasi) superhypergraphs based on the permutations, and we have presented the isomorphic conditions of (self complemented) valued fuzzy (quasi) superhypergraphs. The concept of impact membership value of fuzzy (quasi) superhypergraphs is introduced in this study and it is applied in designing the real problem in the real world. Finally, the problem of business superhypernetworks is presented as an application of fuzzy valued quasi superhypergraphs in the real world

    A novel approach toward skin cancer classification through fused deep features and neutrosophic environment

    Get PDF
    Variations in the size and texture of melanoma make the classification procedure more complex in a computer-aided diagnostic (CAD) system. The research proposes an innovative hybrid deep learning-based layer-fusion and neutrosophic-set technique for identifying skin lesions. The off-the-shelf networks are examined to categorize eight types of skin lesions using transfer learning on International Skin Imaging Collaboration (ISIC) 2019 skin lesion datasets. The top two networks, which are GoogleNet and DarkNet, achieved an accuracy of 77.41 and 82.42%, respectively. The proposed method works in two successive stages: first, boosting the classification accuracy of the trained networks individually. A suggested feature fusion methodology is applied to enrich the extracted features’ descriptive power, which promotes the accuracy to 79.2 and 84.5%, respectively. The second stage explores how to combine these networks for further improvement. The error-correcting output codes (ECOC) paradigm is utilized for constructing a set of well-trained true and false support vector machine (SVM) classifiers via fused DarkNet and GoogleNet feature maps, respectively. The ECOC’s coding matrices are designed to train each true classifier and its opponent in a one-versus-other fashion. Consequently, contradictions between true and false classifiers in terms of their classification scores create an ambiguity zone quantified by the indeterminacy set. Recent neutrosophic techniques resolve this ambiguity to tilt the balance toward the correct skin cancer class. As a result, the classification score is increased to 85.74%, outperforming the recent proposals by an obvious step. The trained models alongside the implementation of the proposed single-valued neutrosophic sets (SVNSs) will be publicly available for aiding relevant research fields

    Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

    Get PDF
    Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor .Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc

    Full Issue

    Get PDF
    corecore