1,068 research outputs found

    A simple fractional-calculus approach to the solutions of the Bessel differential equation of general order and some of its applications

    Get PDF
    AbstractIn many recent works, several authors demonstrated the usefulness of fractional calculus operators in the derivation of (explicit) particular solutions of a significantly large number of linear ordinary and partial differential equations of the second and higher orders. The main object of the present paper is to show how this simple fractional-calculus approach to the solutions of the classical Bessel differential equation of general order would lead naturally to several interesting consequences which include (for example) an alternative investigation of the power-series solutions obtainable usually by the Frobenius method. The methodology presented here is based largely upon some of the general theorems on (explicit) particular solutions of a certain family of linear ordinary fractional differintegral equations

    Numerical Approximations to Fractional Problems of the Calculus of Variations and Optimal Control

    Full text link
    This chapter presents some numerical methods to solve problems in the fractional calculus of variations and fractional optimal control. Although there are plenty of methods available in the literature, we concentrate mainly on approximating the fractional problem either by discretizing the fractional term or expanding the fractional derivatives as a series involving integer order derivatives. The former method, as a subclass of direct methods in the theory of calculus of variations, uses finite differences, Grunwald-Letnikov definition in this case, to discretize the fractional term. Any quadrature rule for integration, regarding the desired accuracy, is then used to discretize the whole problem including constraints. The final task in this method is to solve a static optimization problem to reach approximated values of the unknown functions on some mesh points. The latter method, however, approximates fractional problems by classical ones in which only derivatives of integer order are present. Precisely, two continuous approximations for fractional derivatives by series involving ordinary derivatives are introduced. Local upper bounds for truncation errors are provided and, through some test functions, the accuracy of the approximations are justified. Then we substitute the fractional term in the original problem with these series and transform the fractional problem to an ordinary one. Hereafter, we use indirect methods of classical theory, e.g. Euler-Lagrange equations, to solve the approximated problem. The methods are mainly developed through some concrete examples which either have obvious solutions or the solution is computed using the fractional Euler-Lagrange equation.Comment: This is a preprint of a paper whose final and definite form appeared in: Chapter V, Fractional Calculus in Analysis, Dynamics and Optimal Control (Editor: Jacky Cresson), Series: Mathematics Research Developments, Nova Science Publishers, New York, 2014. (See http://www.novapublishers.com/catalog/product_info.php?products_id=46851). Consists of 39 page

    The sixth Painleve transcendent and uniformization of algebraic curves

    Full text link
    We exhibit a remarkable connection between sixth equation of Painleve list and infinite families of explicitly uniformizable algebraic curves. Fuchsian equations, congruences for group transformations, differential calculus of functions and differentials on corresponding Riemann surfaces, Abelian integrals, analytic connections (generalizations of Chazy's equations), and other attributes of uniformization can be obtained for these curves. As byproducts of the theory, we establish relations between Picard-Hitchin's curves, hyperelliptic curves, punctured tori, Heun's equations, and the famous differential equation which Apery used to prove the irrationality of Riemann's zeta(3).Comment: Final version. Numerous improvements; English, 49 pages, 1 table, no figures, LaTe
    corecore