6 research outputs found

    Adaptive Robotic Control Driven by a Versatile Spiking Cerebellar Network

    Get PDF
    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.European Union (Human Brain Project) REALNET FP7-ICT270434 CEREBNET FP7-ITN238686 HBP-60410

    Functional Anatomy Of The Intermediate Cerebellum In The Rat

    Get PDF
    The cerebellum is situated in the posterior part of the scull, dorsal to the brainstem and pontine nuclei (Fig.1). Despite the fact that it is called “little brain” it harbors about half of the total number of neurons within the central nervous system (Kandel, 2003). The cerebellum is divided into an anterior lobe and a posterior lobe by the deep primary fissure. In addition, the posterior lobe is separated from the flocculonodular lobe by the posterolateral fissure. Transverse (interlobular) fissures divide the cerebellum further into 10 lobules (numbered I to X; Larsell, 1952; Larsell and Jansen, 1970). These lobules can be further sub divided by a various amount of foliation according to species (Figure 1). From medial to lateral, the cerebellum is divided into a vermis and a laterally positioned hemisphere. Amongst the two the paravermis or intermediate cerebellum is located, the organization and function of which will be the focus of this thesis. The cerebellum consists of a superficially located cortex, which, due to the impressive foliations reaches an enormous surface in the human. Deep in the white matter of the cerebellum the cerebellar nuclei are located which provide the output of the cerebellum. The cerebellum is connected to the brainstem by three cerebellar peduncles (superior, middle and inferior). Afferent connections (see 1.3) are found in all three peduncles and contact neurons located in the cerebellar cortex and/or the cerebellar nuclei (see 1.2 and 1.4). Efferent fibers leave the cerebellum via the superior cerebellar peduncle or via the uncinate tracts. The Purkinje cell layer of the flocculonodular lobe projects directly to the vestibular nuclei. Functionally, the cerebellum is divided into three regions; the phylogenetically oldest one presumably is the vestibulocerebellum, which more or less equals the flocculonodular lobe, and is involved in controlling balance and eye movements. The second part anatomically consists of the vermis and paravermis and is referred to as the spinocerebellum due to the fact that it receives abundant somatosensory input from the spinal cord. It is thought to be mostly involved in reflexive and/or unconsciously executed motor control of the striated muscles. Finally, the cerebrocerebellum, consisting of most of the hemispheres, is phylogenetically the youngest addition to the cerebellum and receives its input almost exclusively related to and from the cerebral cortex. It is concerned with the planning, coordination and learning of complex movements but has also been implicated in cognitive functions (Schmahmann, 1991; Gao et al., 1996). The cells that make up the cerebellum, their in- and output relations and their possible functions will be addressed

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Neocerebellar Kalman filter linguistic processor: from grammaticalization to transcranial magnetic stimulation

    Get PDF
    The present work introduces a synthesis of neocerebellar state estimation and feedforward control with multi-level language processing. The approach combines insights from clinical, imaging, and modelling work on the cerebellum with psycholinguistic and historical linguistic research. It finally provides the first experimental attempts towards the empirical validation of this synthesis, employing transcranial magnetic stimulation. A neuroanatomical locus traditionally seen as limited to lower sensorimotor functions, the cerebellum has, over the last decades, emerged as a widely accepted foundation of feedforward control and state estimation. Its cytoarchitectural homogeneity and diverse connectivity with virtually all parts of the central nervous system strongly support the idea of a uniform, domain-general cerebellar computation. Its reciprocal connectivity with language-related cortical areas suggests that this uniform cerebellar computation is also applied in language processing. Insight into the latter, however, remains an elusive desideratum; instead, research on cerebellar language functions is predominantly involved in the frontal cortical-like deficits (e.g. aphasias) seldom induced by cerebellar impairment. At the same time, reflections on cerebellar computations in language processing remain at most speculative, given the lack of discourse between cerebellar neuroscientists and psycholinguists. On the other hand, the fortunate contingency of the recent accommodation of these computations in psycholinguistic models provides the foundations for satisfying the desideratum above. The thesis thus formulates a neurolinguistic model whereby multi-level, predictive, associative linguistic operations are acquired and performed in neocerebello-cortical circuits, and are adaptively combined with cortico-cortical categorical processes. A broad range of psycholinguistic phenomena, involving, among others, "pragmatic normalization", "verbal/semantic illusions", associative priming, and phoneme restoration, are discussed in the light of recent findings on neocerebellar cognitive functions, and provide a rich research agenda for the experimental validation of the proposal. The hypothesis is then taken further, examining grammaticalization changes in the light of neocerebellar linguistic contributions. Despite a) the broad acceptance of routinization and automatization processes as the domain-general core of grammaticalization, b) the growing psycholinguistic research on routinized processing, and c) the evidence on neural circuits involved in automatization processes (crucially involving the cerebellum), interdisciplinary discourse remains strikingly poor. Based on the above, a synthesis is developed, whereby grammaticalization changes are introduced in routinized dialogical interaction as the result of maximized involvement of associative neocerebello-cortical processes. The thesis then turns to the first steps taken towards the verification of the hypothesis at hand. In view of the large methodological limitations of clinical research on cerebellar cognitive functions, the transcranial magnetic stimulation apparatus is employed instead, producing the very first linguistic experiments involving cerebellar stimulation. Despite the considerable technical difficulties met, neocerebellar loci are shown to be selectively involved in formal- and semantic-associative computations, with far-reaching consequences for neurolinguistic models of sentence processing. In particular, stimulation of the neocerebellar vermis is found to selectively enhance formal-associative priming in native speakers of English, and to disrupt, rather selectively, semantic-categorical priming in native speakers of Modern Greek, as well as to disrupt the practice-induced facilitation in processing repeatedly associated letter strings. Finally, stimulation of the right neocerebellar Crus I is found to enhance, quite selectively, semantic-associative priming in native speakers of English, while stimulation of the right neocerebellar vermis is shown to disrupt semantic priming altogether. The results are finally discussed in the light of a future research agenda overcoming the technical limitations met here
    corecore