305 research outputs found

    BaNa: a noise resilient fundamental frequency detection algorithm for speech and music

    Get PDF
    Fundamental frequency (F0) is one of the essential features in many acoustic related applications. Although numerous F0 detection algorithms have been developed, the detection accuracy in noisy environments still needs improvement. We present a hybrid noise resilient F0 detection algorithm named BaNa that combines the approaches of harmonic ratios and Cepstrum analysis. A Viterbi algorithm with a cost function is used to identify the F0 value among several F0 candidates. Speech and music databases with eight different types of additive noise are used to evaluate the performance of the BaNa algorithm and several classic and state-of-the-art F0 detection algorithms. Results show that for almost all types of noise and signal-to-noise ratio (SNR) values investigated, BaNa achieves the lowest Gross Pitch Error (GPE) rate among all the algorithms. Moreover, for the 0 dB SNR scenarios, the BaNa algorithm is shown to achieve 20% to 35% GPE rate for speech and 12% to 39% GPE rate for music. We also describe implementation issues that must be addressed to run the BaNa algorithm as a real-time application on a smartphone platform.Peer ReviewedPostprint (author's final draft

    Novel Pitch Detection Algorithm With Application to Speech Coding

    Get PDF
    This thesis introduces a novel method for accurate pitch detection and speech segmentation, named Multi-feature, Autocorrelation (ACR) and Wavelet Technique (MAWT). MAWT uses feature extraction, and ACR applied on Linear Predictive Coding (LPC) residuals, with a wavelet-based refinement step. MAWT opens the way for a unique approach to modeling: although speech is divided into segments, the success of voicing decisions is not crucial. Experiments demonstrate the superiority of MAWT in pitch period detection accuracy over existing methods, and illustrate its advantages for speech segmentation. These advantages are more pronounced for gain-varying and transitional speech, and under noisy conditions

    Harmonic to noise ratio measurement - selection of window and length

    Get PDF
    Harmonic to Noise Ratio (HNR) measures the ratio between periodic and non-periodic components of a speech sound. It has become more and more important in the vocal acoustic analysis to diagnose pathologic voices. The measure of this parameter can be done with Praat software that is commonly accept by the scientific community has an accurate measure. Anyhow, this measure is dependent with the type of window used and its length. In this paper an analysis of the influence of the window and its length was made. The Hanning, Hamming and Blackman windows and the lengths between 6 and 24 glottal periods were experimented. Speech files of control subjects and pathologic subjects were used. The results showed that the Hanning window with the length of 12 glottal periods gives measures of HNR more close to the Praat measures.info:eu-repo/semantics/publishedVersio

    Pitch-scaled estimation of simultaneous voiced and turbulence-noise components in speech

    Full text link

    Speech Enhancement Exploiting the Source-Filter Model

    Get PDF
    Imagining everyday life without mobile telephony is nowadays hardly possible. Calls are being made in every thinkable situation and environment. Hence, the microphone will not only pick up the user’s speech but also sound from the surroundings which is likely to impede the understanding of the conversational partner. Modern speech enhancement systems are able to mitigate such effects and most users are not even aware of their existence. In this thesis the development of a modern single-channel speech enhancement approach is presented, which uses the divide and conquer principle to combat environmental noise in microphone signals. Though initially motivated by mobile telephony applications, this approach can be applied whenever speech is to be retrieved from a corrupted signal. The approach uses the so-called source-filter model to divide the problem into two subproblems which are then subsequently conquered by enhancing the source (the excitation signal) and the filter (the spectral envelope) separately. Both enhanced signals are then used to denoise the corrupted signal. The estimation of spectral envelopes has quite some history and some approaches already exist for speech enhancement. However, they typically neglect the excitation signal which leads to the inability of enhancing the fine structure properly. Both individual enhancement approaches exploit benefits of the cepstral domain which offers, e.g., advantageous mathematical properties and straightforward synthesis of excitation-like signals. We investigate traditional model-based schemes like Gaussian mixture models (GMMs), classical signal processing-based, as well as modern deep neural network (DNN)-based approaches in this thesis. The enhanced signals are not used directly to enhance the corrupted signal (e.g., to synthesize a clean speech signal) but as so-called a priori signal-to-noise ratio (SNR) estimate in a traditional statistical speech enhancement system. Such a traditional system consists of a noise power estimator, an a priori SNR estimator, and a spectral weighting rule that is usually driven by the results of the aforementioned estimators and subsequently employed to retrieve the clean speech estimate from the noisy observation. As a result the new approach obtains significantly higher noise attenuation compared to current state-of-the-art systems while maintaining a quite comparable speech component quality and speech intelligibility. In consequence, the overall quality of the enhanced speech signal turns out to be superior as compared to state-of-the-art speech ehnahcement approaches.Mobiltelefonie ist aus dem heutigen Leben nicht mehr wegzudenken. Telefonate werden in beliebigen Situationen an beliebigen Orten geführt und dabei nimmt das Mikrofon nicht nur die Sprache des Nutzers auf, sondern auch die Umgebungsgeräusche, welche das Verständnis des Gesprächspartners stark beeinflussen können. Moderne Systeme können durch Sprachverbesserungsalgorithmen solchen Effekten entgegenwirken, dabei ist vielen Nutzern nicht einmal bewusst, dass diese Algorithmen existieren. In dieser Arbeit wird die Entwicklung eines einkanaligen Sprachverbesserungssystems vorgestellt. Der Ansatz setzt auf das Teile-und-herrsche-Verfahren, um störende Umgebungsgeräusche aus Mikrofonsignalen herauszufiltern. Dieses Verfahren kann für sämtliche Fälle angewendet werden, in denen Sprache aus verrauschten Signalen extrahiert werden soll. Der Ansatz nutzt das Quelle-Filter-Modell, um das ursprüngliche Problem in zwei Unterprobleme aufzuteilen, die anschließend gelöst werden, indem die Quelle (das Anregungssignal) und das Filter (die spektrale Einhüllende) separat verbessert werden. Die verbesserten Signale werden gemeinsam genutzt, um das gestörte Mikrofonsignal zu entrauschen. Die Schätzung von spektralen Einhüllenden wurde bereits in der Vergangenheit erforscht und zum Teil auch für die Sprachverbesserung angewandt. Typischerweise wird dabei jedoch das Anregungssignal vernachlässigt, so dass die spektrale Feinstruktur des Mikrofonsignals nicht verbessert werden kann. Beide Ansätze nutzen jeweils die Eigenschaften der cepstralen Domäne, die unter anderem vorteilhafte mathematische Eigenschaften mit sich bringen, sowie die Möglichkeit, Prototypen eines Anregungssignals zu erzeugen. Wir untersuchen modellbasierte Ansätze, wie z.B. Gaußsche Mischmodelle, klassische signalverarbeitungsbasierte Lösungen und auch moderne tiefe neuronale Netzwerke in dieser Arbeit. Die so verbesserten Signale werden nicht direkt zur Sprachsignalverbesserung genutzt (z.B. Sprachsynthese), sondern als sogenannter A-priori-Signal-zu-Rauschleistungs-Schätzwert in einem traditionellen statistischen Sprachverbesserungssystem. Dieses besteht aus einem Störleistungs-Schätzer, einem A-priori-Signal-zu-Rauschleistungs-Schätzer und einer spektralen Gewichtungsregel, die üblicherweise mit Hilfe der Ergebnisse der beiden Schätzer berechnet wird. Schließlich wird eine Schätzung des sauberen Sprachsignals aus der Mikrofonaufnahme gewonnen. Der neue Ansatz bietet eine signifikant höhere Dämpfung des Störgeräuschs als der bisherige Stand der Technik. Dabei wird eine vergleichbare Qualität der Sprachkomponente und der Sprachverständlichkeit gewährleistet. Somit konnte die Gesamtqualität des verbesserten Sprachsignals gegenüber dem Stand der Technik erhöht werden

    Optimizing acoustic and perceptual assessment of voice quality in children with vocal nodules

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 105-109).Few empirically-derived guidelines exist for optimizing the assessment of vocal function in children with voice disorders. The goal of this investigation was to identify a minimal set of speech tasks and associated acoustic analysis methods that are most salient in characterizing the impact of vocal nodules on vocal function in children. Hence, a pediatric assessment protocol was developed based on the standardized Consensus Auditory Perceptual Evaluation of Voice (CAPE-V) used to evaluate adult voices. Adult and pediatric versions of the CAPE-V protocols were used to gather recordings of vowels and sentences from adult females and children (4-6 and 8-10 year olds) with normal voices and vocal nodules, and these recordings were subjected to perceptual and acoustic analyses. Results showed that perceptual ratings for breathiness best characterized the presence of nodules in children's voices, and ratings for the production of sentences best differentiated normal voices and voices with nodules for both children and adults. Selected voice quality-related acoustic algorithms designed to quantitatively evaluate acoustic measures of vowels and sentences, were modified to be pitch-independent for use in analyzing children's voices. Synthesized vowels for children and adults were used to validate the modified algorithms by systematically assessing the effects of manipulating the periodicity and spectral characteristics of the synthesizer's voicing source.(cont.) In applying the validated algorithms to the recordings of subjects with normal voices and vocal nodules, the acoustic measure tended to differentiate normal voices and voices with nodules in children and adults, and some displayed significant correlations with the perceptual attributes of overall severity of dysphonia, roughness, and/or breathiness. None of the acoustic measures correlated significantly with the perceptual attribute of strain. Limitations in the strength of the correlations between acoustic measures and perceptual attributes were attributed to factors that can be addressed in future investigations, which can now utilize the algorithms that were developed in this investigation for children's voices. Preliminary recommendations are made for the clinical assessment of pediatric voice disorders.by Asako Masaki.Ph.D

    The development of corpus-based computer assisted composition program and its application for instrumental music composition

    Get PDF
    In the last 20 years, we have seen the nourishing environment for the development of music software using a corpus of audio data expanding significantly, namely that synthesis techniques producing electronic sounds, and supportive tools for creative activities are the driving forces to the growth. Some software produces a sequence of sounds by means of synthesizing a chunk of source audio data retrieved from an audio database according to a rule. Since the matching of sources is processed according to their descriptive features extracted by FFT analysis, the quality of the result is significantly influenced by the outcomes of the Audio Analysis, Segmentation, and Decomposition. Also, the synthesis process often requires a considerable amount of sample data and this can become an obstacle to establish easy, inexpensive, and user-friendly applications on various kinds of devices. Therefore, it is crucial to consider how to treat the data and construct an efficient database for the synthesis. We aim to apply corpusbased synthesis techniques to develop a Computer Assisted Composition program, and to investigate the actual application of the program on ensemble pieces. The goal of this research is to apply the program to the instrumental music composition, refine its function, and search new avenues for innovative compositional method
    corecore