6 research outputs found

    HapticHead - Augmenting Reality via Tactile Cues

    Get PDF
    Information overload is increasingly becoming a challenge in today's world. Humans have only a limited amount of attention to allocate between sensory channels and tend to miss or misjudge critical sensory information when multiple activities are going on at the same time. For example, people may miss the sound of an approaching car when walking across the street while looking at their smartphones. Some sensory channels may also be impaired due to congenital or acquired conditions. Among sensory channels, touch is often experienced as obtrusive, especially when it occurs unexpectedly. Since tactile actuators can simulate touch, targeted tactile stimuli can provide users of virtual reality and augmented reality environments with important information for navigation, guidance, alerts, and notifications. In this dissertation, a tactile user interface around the head is presented to relieve or replace a potentially impaired visual channel, called \emph{HapticHead}. It is a high-resolution, omnidirectional, vibrotactile display that presents general, 3D directional, and distance information through dynamic tactile patterns. The head is well suited for tactile feedback because it is sensitive to mechanical stimuli and provides a large spherical surface area that enables the display of precise 3D information and allows the user to intuitively rotate the head in the direction of a stimulus based on natural mapping. Basic research on tactile perception on the head and studies on various use cases of head-based tactile feedback are presented in this thesis. Several investigations and user studies have been conducted on (a) the funneling illusion and localization accuracy of tactile stimuli around the head, (b) the ability of people to discriminate between different tactile patterns on the head, (c) approaches to designing tactile patterns for complex arrays of actuators, (d) increasing the immersion and presence level of virtual reality applications, and (e) assisting people with visual impairments in guidance and micro-navigation. In summary, tactile feedback around the head was found to be highly valuable as an additional information channel in various application scenarios. Most notable is the navigation of visually impaired individuals through a micro-navigation obstacle course, which is an order of magnitude more accurate than the previous state-of-the-art, which used a tactile belt as a feedback modality. The HapticHead tactile user interface's ability to safely navigate people with visual impairments around obstacles and on stairs with a mean deviation from the optimal path of less than 6~cm may ultimately improve the quality of life for many people with visual impairments.Die InformationsĂŒberlastung wird in der heutigen Welt zunehmend zu einer Herausforderung. Der Mensch hat nur eine begrenzte Menge an Aufmerksamkeit, die er zwischen den SinneskanĂ€len aufteilen kann, und neigt dazu, kritische Sinnesinformationen zu verpassen oder falsch einzuschĂ€tzen, wenn mehrere AktivitĂ€ten gleichzeitig ablaufen. Zum Beispiel können Menschen das GerĂ€usch eines herannahenden Autos ĂŒberhören, wenn sie ĂŒber die Straße gehen und dabei auf ihr Smartphone schauen. Einige SinneskanĂ€le können auch aufgrund von angeborenen oder erworbenen Erkrankungen beeintrĂ€chtigt sein. Unter den SinneskanĂ€len wird BerĂŒhrung oft als aufdringlich empfunden, besonders wenn sie unerwartet auftritt. Da taktile Aktoren BerĂŒhrungen simulieren können, können gezielte taktile Reize den Benutzern von Virtual- und Augmented Reality Anwendungen wichtige Informationen fĂŒr die Navigation, FĂŒhrung, Warnungen und Benachrichtigungen liefern. In dieser Dissertation wird eine taktile BenutzeroberflĂ€che um den Kopf herum prĂ€sentiert, um einen möglicherweise beeintrĂ€chtigten visuellen Kanal zu entlasten oder zu ersetzen, genannt \emph{HapticHead}. Es handelt sich um ein hochauflösendes, omnidirektionales, vibrotaktiles Display, das allgemeine, 3D-Richtungs- und Entfernungsinformationen durch dynamische taktile Muster darstellt. Der Kopf eignet sich gut fĂŒr taktiles Feedback, da er empfindlich auf mechanische Reize reagiert und eine große sphĂ€rische OberflĂ€che bietet, die die Darstellung prĂ€ziser 3D-Informationen ermöglicht und es dem Benutzer erlaubt, den Kopf aufgrund der natĂŒrlichen Zuordnung intuitiv in die Richtung eines Reizes zu drehen. Grundlagenforschung zur taktilen Wahrnehmung am Kopf und Studien zu verschiedenen AnwendungsfĂ€llen von kopfbasiertem taktilem Feedback werden in dieser Arbeit vorgestellt. Mehrere Untersuchungen und Nutzerstudien wurden durchgefĂŒhrt zu (a) der Funneling Illusion und der Lokalisierungsgenauigkeit von taktilen Reizen am Kopf, (b) der FĂ€higkeit von Menschen, zwischen verschiedenen taktilen Mustern am Kopf zu unterscheiden, (c) AnsĂ€tzen zur Gestaltung taktiler Muster fĂŒr komplexe Arrays von Aktoren, (d) der Erhöhung des Immersions- und PrĂ€senzgrades von Virtual-Reality-Anwendungen und (e) der UnterstĂŒtzung von Menschen mit Sehbehinderungen bei der FĂŒhrung und Mikronavigation. Zusammenfassend wurde festgestellt, dass taktiles Feedback um den Kopf herum als zusĂ€tzlicher Informationskanal in verschiedenen Anwendungsszenarien sehr wertvoll ist. Am interessantesten ist die Navigation von sehbehinderten Personen durch einen Mikronavigations-Hindernisparcours, welche um eine GrĂ¶ĂŸenordnung prĂ€ziser ist als der bisherige Stand der Technik, der einen taktilen GĂŒrtel als Feedback-ModalitĂ€t verwendete. Die FĂ€higkeit der taktilen Benutzerschnittstelle HapticHead, Menschen mit Sehbehinderungen mit einer mittleren Abweichung vom optimalen Pfad von weniger als 6~cm sicher um Hindernisse und auf Treppen zu navigieren, kann letztendlich die LebensqualitĂ€t vieler Menschen mit Sehbehinderungen verbessern

    Tactile Language for a Head-Mounted Sensory Augmentation Device

    Get PDF
    Sensory augmentation is one of the most exciting domains for research in human-machine biohybridicity. The current paper presents the design of a 2nd generation vibrotactile helmet as a sensory augmentation prototype that is being developed to help users to navigate in low visibility environments. The paper outlines a study in which the user navigates along a virtual wall whilst the position and orientation of the user’s head is tracked by a motion capture system. Vibrotactile feedback is presented according to the user’s distance from the virtual wall and their head orientation. The research builds on our previous work by developing a simplified “tactile language” for communicating navigation commands. A key goal is to identify language tokens suitable to a head-mounted tactile interface that are maximally informative, minimize information overload, intuitive, and that have the potential to become ‘experientially transparent

    Head-mounted Sensory Augmentation System for Navigation in Low Visibility Environments

    Get PDF
    Sensory augmentation can be used to assist in some tasks where sensory information is limited or sparse. This thesis focuses on the design and investigation of a head-mounted vibrotactile sensory augmentation interface to assist navigation in low visibility environments such as firefighters’ navigation or travel aids for visually impaired people. A novel head-mounted vibrotactile interface comprising a 1-by-7 vibrotactile display worn on the forehead is developed. A series of psychophysical studies is carried out with this display to (1) determine the vibrotactile absolute threshold, (2) investigate the accuracy of vibrotactile localization, and (3) evaluate the funneling illusion and apparent motion as sensory phenomena that could be used to communicate navigation signals. The results of these studies provide guidelines for the design of head-mounted interfaces. A 2nd generation head-mounted sensory augmentation interface called the Mark-II Tactile Helmet is developed for the application of firefighters’ navigation. It consists of a ring of ultrasound sensors mounted to the outside of a helmet, a microcontroller, two batteries and a refined vibrotactile display composed of seven vibration motors based on the results of the aforementioned psychophysical studies. A ‘tactile language’, that is, a set of distinguishable vibrotactile patterns, is developed for communicating navigation commands to the Mark-II Tactile Helmet. Four possible combinations of two command presentation modes (continuous, discrete) and two command types (recurring, single) are evaluated for their effectiveness in guiding users along a virtual wall in a structured environment. Continuous and discrete presentation modes use spatiotemporal patterns that induce the experience of apparent movement and discrete movement on the forehead, respectively. The recurring command type presents the tactile command repeatedly with an interval between patterns of 500 ms while the single command type presents the tactile command just once when there is a change in the command. The effectiveness of this tactile language is evaluated according to the objective measures of the users’ walking speed and the smoothness of their trajectory parallel to the virtual wall and subjective measures of utility and comfort employing Likert-type rating scales. The Recurring Continuous (RC) commands that exploit the phenomena of apparent motion are most effective in generating efficient routes and fast travel, and are most preferred. Finally, the optimal tactile language (RC) is compared with audio guidance using verbal instructions to investigate effectiveness in delivering navigation commands. The results show that haptic guidance leads to better performance as well as lower cognitive workload compared to auditory feedback. This research demonstrates that a head-mounted sensory augmentation interface can enhance spatial awareness in low visibility environments and could help firefighters’ navigation by providing them with supplementary sensory information

    Head-mounted Sensory Augmentation Device: Comparing Haptic and Audio Modality

    Get PDF
    This paper investigates and compares the effectiveness of haptic and audio modality for navigation in low visibility environment using a sensory augmentation device. A second generation head-mounted vibrotactile interface as a sensory augmentation prototype was developed to help users to navigate in such environments. In our experiment, a subject navigates along a wall relying on the haptic or audio feedbacks as navigation commands. Haptic/audio feedback is presented to the subjects according to the information measured from the walls to a set of 12 ultrasound sensors placed around a helmet and a classification algorithm by using multilayer perceptron neural network. Results showed the haptic modality leads to significantly lower route deviation in navigation compared to auditory feedback. Furthermore, the NASA TLX questionnaire showed that subjects reported lower cognitive workload with haptic modality although both modalities were able to navigate the users along the wall

    An enactive approach to perceptual augmentation in mobility

    Get PDF
    Event predictions are an important constituent of situation awareness, which is a key objective for many applications in human-machine interaction, in particular in driver assistance. This work focuses on facilitating event predictions in dynamic environments. Its primary contributions are 1) the theoretical development of an approach for enabling people to expand their sampling and understanding of spatiotemporal information, 2) the introduction of exemplary systems that are guided by this approach, 3) the empirical investigation of effects functional prototypes of these systems have on human behavior and safety in a range of simulated road traffic scenarios, and 4) a connection of the investigated approach to work on cooperative human-machine systems. More specific contents of this work are summarized as follows: The first part introduces several challenges for the formation of situation awareness as a requirement for safe traffic participation. It reviews existing work on these challenges in the domain of driver assistance, resulting in an identification of the need to better inform drivers about dynamically changing aspects of a scene, including event probabilities, spatial and temporal distances, as well as a suggestion to expand the scope of assistance systems to start informing drivers about relevant scene elements at an early stage. Novel forms of assistance can be guided by different fundamental approaches that target either replacement, distribution, or augmentation of driver competencies. A subsequent differentiation of these approaches concludes that an augmentation-guided paradigm, characterized by an integration of machine capabilities into human feedback loops, can be advantageous for tasks that rely on active user engagement, the preservation of awareness and competence, and the minimization of complexity in human- machine interaction. Consequently, findings and theories about human sensorimotor processes are connected to develop an enactive approach that is consistent with an augmentation perspective on human-machine interaction. The approach is characterized by enabling drivers to exercise new sensorimotor processes through which safety-relevant spatiotemporal information may be sampled. In the second part of this work, a concept and functional prototype for augmenting the perception of traffic dynamics is introduced as a first example for applying principles of this enactive approach. As a loose expression of functional biomimicry, the prototype utilizes a tactile inter- face that communicates temporal distances to potential hazards continuously through stimulus intensity. In a driving simulator study, participants quickly gained an intuitive understanding of the assistance without instructions and demonstrated higher driving safety in safety-critical highway scenarios. But this study also raised new questions such as whether benefits are due to a continuous time-intensity encoding and whether utility generalizes to intersection scenarios or highway driving with low criticality events. Effects of an expanded assistance prototype with lane-independent risk assessment and an option for binary signaling were thus investigated in a separate driving simulator study. Subjective responses confirmed quick signal understanding and a perception of spatial and temporal stimulus characteristics. Surprisingly, even for a binary assistance variant with a constant intensity level, participants reported perceiving a danger-dependent variation in stimulus intensity. They further felt supported by the system in the driving task, especially in difficult situations. But in contrast to the first study, this support was not expressed by changes in driving safety, suggesting that perceptual demands of the low criticality scenarios could be satisfied by existing driver capabilities. But what happens if such basic capabilities are impaired, e.g., due to poor visibility conditions or other situations that introduce perceptual uncertainty? In a third driving simulator study, the driver assistance was employed specifically in such ambiguous situations and produced substantial safety advantages over unassisted driving. Additionally, an assistance variant that adds an encoding of spatial uncertainty was investigated in these scenarios. Participants had no difficulties to understand and utilize this added signal dimension to improve safety. Despite being inherently less informative than spatially precise signals, users rated uncertainty-encoding signals as equally useful and satisfying. This appreciation for transparency of variable assistance reliability is a promising indicator for the feasibility of an adaptive trust calibration in human-machine interaction and marks one step towards a closer integration of driver and vehicle capabilities. A complementary step on the driver side would be to increase transparency about the driver’s mental states and thus allow for mutual adaptation. The final part of this work discusses how such prerequisites of cooperation may be achieved by monitoring mental state correlates observable in human behavior, especially in eye movements. Furthermore, the outlook for an addition of cooperative features also raises new questions about the bounds of identity as well as practical consequences of human-machine systems in which co-adapting agents may exercise sensorimotor processes through one another.Die Vorhersage von Ereignissen ist ein Bestandteil des Situationsbewusstseins, dessen UnterstĂŒtzung ein wesentliches Ziel diverser Anwendungen im Bereich Mensch-Maschine Interaktion ist, insbesondere in der Fahrerassistenz. Diese Arbeit zeigt Möglichkeiten auf, Menschen bei Vorhersagen in dynamischen Situationen im Straßenverkehr zu unterstĂŒtzen. Zentrale BeitrĂ€ge der Arbeit sind 1) eine theoretische Auseinandersetzung mit der Aufgabe, die menschliche Wahrnehmung und das VerstĂ€ndnis von raum-zeitlichen Informationen im Straßenverkehr zu erweitern, 2) die EinfĂŒhrung beispielhafter Systeme, die aus dieser Betrachtung hervorgehen, 3) die empirische Untersuchung der Auswirkungen dieser Systeme auf das Nutzerverhalten und die Fahrsicherheit in simulierten Verkehrssituationen und 4) die VerknĂŒpfung der untersuchten AnsĂ€tze mit Arbeiten an kooperativen Mensch-Maschine Systemen. Die Arbeit ist in drei Teile gegliedert: Der erste Teil stellt einige Herausforderungen bei der Bildung von Situationsbewusstsein vor, welches fĂŒr die sichere Teilnahme am Straßenverkehr notwendig ist. Aus einem Vergleich dieses Überblicks mit frĂŒheren Arbeiten zeigt sich, dass eine Notwendigkeit besteht, Fahrer besser ĂŒber dynamische Aspekte von Fahrsituationen zu informieren. Dies umfasst unter anderem Ereigniswahrscheinlichkeiten, rĂ€umliche und zeitliche Distanzen, sowie eine frĂŒhere Signalisierung relevanter Elemente in der Umgebung. Neue Formen der Assistenz können sich an verschiedenen grundlegenden AnsĂ€tzen der Mensch-Maschine Interaktion orientieren, die entweder auf einen Ersatz, eine Verteilung oder eine Erweiterung von Fahrerkompetenzen abzielen. Die Differenzierung dieser AnsĂ€tze legt den Schluss nahe, dass ein von Kompetenzerweiterung geleiteter Ansatz fĂŒr die BewĂ€ltigung jener Aufgaben von Vorteil ist, bei denen aktiver Nutzereinsatz, die Erhaltung bestehender Kompetenzen und Situationsbewusstsein gefordert sind. Im Anschluss werden Erkenntnisse und Theorien ĂŒber menschliche sensomotorische Prozesse verknĂŒpft, um einen enaktiven Ansatz der Mensch-Maschine Interaktion zu entwickeln, der einer erweiterungsgeleiteten Perspektive Rechnung trĂ€gt. Dieser Ansatz soll es Fahrern ermöglichen, sicherheitsrelevante raum-zeitliche Informationen ĂŒber neue sensomotorische Prozesse zu erfassen. Im zweiten Teil der Arbeit wird ein Konzept und funktioneller Prototyp zur Erweiterung der Wahrnehmung von Verkehrsdynamik als ein erstes Beispiel zur Anwendung der Prinzipien dieses enaktiven Ansatzes vorgestellt. Dieser Prototyp nutzt vibrotaktile Aktuatoren zur Kommunikation von Richtungen und zeitlichen Distanzen zu möglichen Gefahrenquellen ĂŒber die Aktuatorposition und -intensitĂ€t. Teilnehmer einer Fahrsimulationsstudie waren in der Lage, in kurzer Zeit ein intuitives VerstĂ€ndnis dieser Assistenz zu entwickeln, ohne vorher ĂŒber die FunktionalitĂ€t unterrichtet worden zu sein. Sie zeigten zudem ein erhöhtes Maß an Fahrsicherheit in kritischen Verkehrssituationen. Doch diese Studie wirft auch neue Fragen auf, beispielsweise, ob der Sicherheitsgewinn auf kontinuierliche Distanzkodierung zurĂŒckzufĂŒhren ist und ob ein Nutzen auch in weiteren Szenarien vorliegen wĂŒrde, etwa bei Kreuzungen und weniger kritischem longitudinalen Verkehr. Um diesen Fragen nachzugehen, wurden Effekte eines erweiterten Prototypen mit spurunabhĂ€ngiger KollisionsprĂ€diktion, sowie einer Option zur binĂ€ren Kommunikation möglicher Kollisionsrichtungen in einer weiteren Fahrsimulatorstudie untersucht. Auch in dieser Studie bestĂ€tigen die subjektiven Bewertungen ein schnelles VerstĂ€ndnis der Signale und eine Wahrnehmung rĂ€umlicher und zeitlicher Signalkomponenten. Überraschenderweise berichteten Teilnehmer grĂ¶ĂŸtenteils auch nach der Nutzung einer binĂ€ren Assistenzvariante, dass sie eine gefahrabhĂ€ngige Variation in der IntensitĂ€t von taktilen Stimuli wahrgenommen hĂ€tten. Die Teilnehmer fĂŒhlten sich mit beiden Varianten in der Fahraufgabe unterstĂŒtzt, besonders in Situationen, die von ihnen als kritisch eingeschĂ€tzt wurden. Im Gegensatz zur ersten Studie hat sich diese gefĂŒhlte UnterstĂŒtzung nur geringfĂŒgig in einer messbaren SicherheitsverĂ€nderung widergespiegelt. Dieses Ergebnis deutet darauf hin, dass die Wahrnehmungsanforderungen der Szenarien mit geringer KritikalitĂ€t mit den vorhandenen FahrerkapazitĂ€ten erfĂŒllt werden konnten. Doch was passiert, wenn diese FĂ€higkeiten eingeschrĂ€nkt werden, beispielsweise durch schlechte Sichtbedingungen oder Situationen mit erhöhter AmbiguitĂ€t? In einer dritten Fahrsimulatorstudie wurde das Assistenzsystem in speziell solchen Situationen eingesetzt, was zu substantiellen Sicherheitsvorteilen gegenĂŒber unassistiertem Fahren gefĂŒhrt hat. ZusĂ€tzlich zu der vorher eingefĂŒhrten Form wurde eine neue Variante des Prototyps untersucht, welche rĂ€umliche Unsicherheiten der Fahrzeugwahrnehmung in taktilen Signalen kodiert. Studienteilnehmer hatten keine Schwierigkeiten, diese zusĂ€tzliche Signaldimension zu verstehen und die Information zur Verbesserung der Fahrsicherheit zu nutzen. Obwohl sie inherent weniger informativ sind als rĂ€umlich prĂ€zise Signale, bewerteten die Teilnehmer die Signale, die die Unsicherheit ĂŒbermitteln, als ebenso nĂŒtzlich und zufriedenstellend. Solch eine WertschĂ€tzung fĂŒr die Transparenz variabler InformationsreliabilitĂ€t ist ein vielversprechendes Indiz fĂŒr die Möglichkeit einer adaptiven Vertrauenskalibrierung in der Mensch-Maschine Interaktion. Dies ist ein Schritt hin zur einer engeren Integration der FĂ€higkeiten von Fahrer und Fahrzeug. Ein komplementĂ€rer Schritt wĂ€re eine Erweiterung der Transparenz mentaler ZustĂ€nde des Fahrers, wodurch eine wechselseitige Anpassung von Mensch und Maschine möglich wĂ€re. Der letzte Teil dieser Arbeit diskutiert, wie diese Transparenz und weitere Voraussetzungen von Mensch-Maschine Kooperation erfĂŒllt werden könnten, indem etwa Korrelate mentaler ZustĂ€nde, insbesondere ĂŒber das Blickverhalten, ĂŒberwacht werden. Des Weiteren ergeben sich mit Blick auf zusĂ€tzliche kooperative FĂ€higkeiten neue Fragen ĂŒber die Definition von IdentitĂ€t, sowie ĂŒber die praktischen Konsequenzen von Mensch-Maschine Systemen, in denen ko-adaptive Agenten sensomotorische Prozesse vermittels einander ausĂŒben können

    Centralizing Bias and the Vibrotactile Funneling Illusion on the Forehead

    Get PDF
    This paper provides a novel psychophysical investigation of headmounted vibrotactile interfaces for sensory augmentation. A 1-by-7 headband vibrotactile display was used to provide stimuli on each participant’s forehead. Experiment I investigated the ability to identify the location of a vibrotactile stimulus presented to a single tactor in the display; results indicated that localization error is uniform but biased towards the forehead midline. In Experiment II, two tactors were activated simultaneously, and participants were asked to indicate whether they experienced one or two stimulus locations. Participants reported the funneling illusion—experiencing one stimulus when two tactors were activated—mainly for the shortest inter-tactor difference. We discuss the significance of these results for the design of head-mounted vibrotactile displays and in relation to research on localization and funneling on different body surface
    corecore