17 research outputs found

    Covariance-Based Estimation for Clustered Sensor Networks Subject to Random Deception Attacks

    Get PDF
    In this paper, a cluster-based approach is used to address the distributed fusion estimation problem (filtering and fixed-point smoothing) for discrete-time stochastic signals in the presence of random deception attacks. At each sampling time, measured outputs of the signal are provided by a networked system, whose sensors are grouped into clusters. Each cluster is connected to a local processor which gathers the measured outputs of its sensors and, in turn, the local processors of all clusters are connected with a global fusion center. The proposed cluster-based fusion estimation structure involves two stages. First, every single sensor in a cluster transmits its observations to the corresponding local processor, where least-squares local estimators are designed by an innovation approach. During this transmission, deception attacks to the sensor measurements may be randomly launched by an adversary, with known probabilities of success that may be different at each sensor. In the second stage, the local estimators are sent to the fusion center, where they are combined to generate the proposed fusion estimators. The covariance-based design of the distributed fusion filtering and fixed-point smoothing algorithms does not require full knowledge of the signal evolution model, but only the first and second order moments of the processes involved in the observation model. Simulations are provided to illustrate the theoretical results and analyze the effect of the attack success probability on the estimation performance.This research is supported by Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional FEDER (grant no. MTM2017-84199-P)

    Quadratic estimation for stochastic systems in the presence of random parameter matrices, time-correlated additive noise and deception attacks

    Get PDF
    This research was suported by the ``Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación'' of Spain and the European Regional Development Fund [grant number PID2021-124486NB-I00].Networked systems usually face different random uncertainties that make the performance of the least-squares (LS) linear filter decline significantly. For this reason, great attention has been paid to the search for other kinds of suboptimal estimators. Among them, the LS quadratic estimation approach has attracted considerable interest in the scientific community for its balance between computational complexity and estimation accuracy. When it comes to stochastic systems subject to different random uncertainties and deception attacks, the quadratic estimator design has not been deeply studied. In this paper, using covariance information, the LS quadratic filtering and fixed-point smoothing problems are addressed under the assumption that the measurements are perturbed by a time-correlated additive noise, as well as affected by random parameter matrices and exposed to random deception attacks. The use of random parameter matrices covers a wide range of common uncertainties and random failures, thus better reflecting the engineering reality. The signal and observation vectors are augmented by stacking the original vectors with their second-order Kronecker powers; then, the linear estimator of the original signal based on the augmented observations provides the required quadratic estimator. A simulation example illustrates the superiority of the proposed quadratic estimators over the conventional linear ones and the effect of the deception attacks on the estimation performance.Ministerio de Ciencia e Innovación MICINNEuropean Regional Development Fund PID2021-124486NB-I00 ERDFAgencia Estatal de Investigación AE

    Unreliable networks with random parameter matrices and time-correlated noises: distributed estimation under deception attacks

    Get PDF
    This paper examines the distributed filtering and fixed-point smoothing problems for networked systems, considering random parameter matrices, time-correlated additive noises and random deception attacks. The proposed distributed estimation algorithms consist of two stages: the first stage creates intermediate estimators based on local and adjacent node measurements, while the second stage combines the intermediate estimators from neighboring sensors using least-squares matrix-weighted linear combinations. The major contributions and challenges lie in simultaneously considering various network-induced phenomena and providing a unified framework for systems with incomplete information. The algorithms are designed without specific structure assumptions and use a covariance-based estimation technique, which does not require knowledge of the evolution model of the signal being estimated. A numerical experiment demonstrates the applicability and effectiveness of the proposed algorithms, highlighting the impact of observation uncertainties and deception attacks on estimation accuracy

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts

    Get PDF
    The climate changes that are visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this book presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on energy internet, blockchain technology, and smart contracts, we hope that they are of interest to readers working in the related fields mentioned above

    Resilient Cooperative Control of Networked Multi-Agent Systems

    Get PDF

    The University of Iowa 2018-19 General Catalog

    Get PDF

    The University of Iowa 2020-21 General Catalog

    Get PDF
    corecore