2,066 research outputs found

    Evaluating the Effectiveness of COVID-19 Bluetooth-Based Smartphone Contact Tracing Applications

    Full text link
    [EN] One of the strategies to control the spread of infectious diseases is based on the use of specialized applications for smartphones. These apps offer the possibility, once individuals are detected to be infected, to trace their previous contacts in order to test and detect new possibly-infected individuals. This paper evaluates the effectiveness of recently developed contact tracing smartphone applications for COVID-19 that rely on Bluetooth to detect contacts. We study how these applications work in order to model the main aspects that can affect their performance: precision, utilization, tracing speed and implementation model (centralized vs. decentralized). Then, we propose an epidemic model to evaluate their efficiency in terms of controlling future outbreaks and the effort required (e.g., individuals quarantined). Our results show that smartphone contact tracing can only be effective when combined with other mild measures that can slightly reduce the reproductive number R0 (for example, social distancing). Furthermore, we have found that a centralized model is much more effective, requiring an application utilization percentage of about 50% to control an outbreak. On the contrary, a decentralized model would require a higher utilization to be effective.This work was partially supported by the "Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018", Spain, under Grant RTI2018-096384-B-I00.Hernández-Orallo, E.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2020). Evaluating the Effectiveness of COVID-19 Bluetooth-Based Smartphone Contact Tracing Applications. Applied Sciences. 10(20):1-19. https://doi.org/10.3390/app10207113S1191020Li, R., Rivers, C., Tan, Q., Murray, M. B., Toner, E., & Lipsitch, M. (2020). The demand for inpatient and ICU beds for COVID-19 in the US: lessons from Chinese cities. doi:10.1101/2020.03.09.20033241(2020). Contact Transmission of COVID-19 in South Korea: Novel Investigation Techniques for Tracing Contacts. Osong Public Health and Research Perspectives, 11(1), 60-63. doi:10.24171/j.phrp.2020.11.1.09Eames, K. T. D., & Keeling, M. J. (2003). Contact tracing and disease control. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1533), 2565-2571. doi:10.1098/rspb.2003.2554Salathé, M. (2018). Digital epidemiology: what is it, and where is it going? Life Sciences, Society and Policy, 14(1). doi:10.1186/s40504-017-0065-7The FluPhone Studyhttps://www.fluphone.orgSafe Pathshttp://safepaths.mit.eduPan-European Privacy-Preserving Proximity Tracing (PEPP-PT)https://www.pepp-pt.orgPelusi, L., Passarella, A., & Conti, M. (2006). Opportunistic networking: data forwarding in disconnected mobile ad hoc networks. IEEE Communications Magazine, 44(11), 134-141. doi:10.1109/mcom.2006.248176Zhang, X., Neglia, G., Kurose, J., & Towsley, D. (2007). Performance modeling of epidemic routing. Computer Networks, 51(10), 2867-2891. doi:10.1016/j.comnet.2006.11.028Helgason, O., Kouyoumdjieva, S. T., & Karlsson, G. (2014). Opportunistic Communication and Human Mobility. IEEE Transactions on Mobile Computing, 13(7), 1597-1610. doi:10.1109/tmc.2013.160Chancay-Garcia, L., Hernandez-Orallo, E., Manzoni, P., Calafate, C. T., & Cano, J.-C. (2018). Evaluating and Enhancing Information Dissemination in Urban Areas of Interest Using Opportunistic Networks. IEEE Access, 6, 32514-32531. doi:10.1109/access.2018.2846201Dede, J., Forster, A., Hernandez-Orallo, E., Herrera-Tapia, J., Kuladinithi, K., Kuppusamy, V., … Vatandas, Z. (2018). Simulating Opportunistic Networks: Survey and Future Directions. IEEE Communications Surveys & Tutorials, 20(2), 1547-1573. doi:10.1109/comst.2017.2782182Hernández-Orallo, E., Murillo-Arcila, M., Calafate, C. T., Cano, J. C., Conejero, J. A., & Manzoni, P. (2016). Analytical evaluation of the performance of contact-Based messaging applications. Computer Networks, 111, 45-54. doi:10.1016/j.comnet.2016.07.006Hernandez-Orallo, E., Olmos, M. D. S., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2015). CoCoWa: A Collaborative Contact-Based Watchdog for Detecting Selfish Nodes. IEEE Transactions on Mobile Computing, 14(6), 1162-1175. doi:10.1109/tmc.2014.2343627Hernandez-Orallo, E., Manzoni, P., Calafate, C. T., & Cano, J.-C. (2020). Evaluating How Smartphone Contact Tracing Technology Can Reduce the Spread of Infectious Diseases: The Case of COVID-19. IEEE Access, 8, 99083-99097. doi:10.1109/access.2020.2998042Christaki, E. (2015). New technologies in predicting, preventing and controlling emerging infectious diseases. Virulence, 6(6), 558-565. doi:10.1080/21505594.2015.1040975Cecilia, J. M., Cano, J., Hernández‐Orallo, E., Calafate, C. T., & Manzoni, P. (2020). Mobile crowdsensing approaches to address the COVID‐19 pandemic in Spain. IET Smart Cities, 2(2), 58-63. doi:10.1049/iet-smc.2020.0037Hernández-Orallo, E., Borrego, C., Manzoni, P., Marquez-Barja, J. M., Cano, J. C., & Calafate, C. T. (2020). Optimising data diffusion while reducing local resources consumption in Opportunistic Mobile Crowdsensing. Pervasive and Mobile Computing, 67, 101201. doi:10.1016/j.pmcj.2020.101201Doran, D., Severin, K., Gokhale, S., & Dagnino, A. (2015). Social media enabled human sensing for smart cities. AI Communications, 29(1), 57-75. doi:10.3233/aic-150683Salathe, M., Kazandjieva, M., Lee, J. W., Levis, P., Feldman, M. W., & Jones, J. H. (2010). A high-resolution human contact network for infectious disease transmission. Proceedings of the National Academy of Sciences, 107(51), 22020-22025. doi:10.1073/pnas.1009094108Fraser, C., Riley, S., Anderson, R. M., & Ferguson, N. M. (2004). Factors that make an infectious disease outbreak controllable. Proceedings of the National Academy of Sciences, 101(16), 6146-6151. doi:10.1073/pnas.0307506101Klinkenberg, D., Fraser, C., & Heesterbeek, H. (2006). The Effectiveness of Contact Tracing in Emerging Epidemics. PLoS ONE, 1(1), e12. doi:10.1371/journal.pone.0000012Kwok, K. O., Tang, A., Wei, V. W. I., Park, W. H., Yeoh, E. K., & Riley, S. (2019). Epidemic Models of Contact Tracing: Systematic Review of Transmission Studies of Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome. Computational and Structural Biotechnology Journal, 17, 186-194. doi:10.1016/j.csbj.2019.01.003Müller, J., Kretzschmar, M., & Dietz, K. (2000). Contact tracing in stochastic and deterministic epidemic models. Mathematical Biosciences, 164(1), 39-64. doi:10.1016/s0025-5564(99)00061-9Huerta, R., & Tsimring, L. S. (2002). Contact tracing and epidemics control in social networks. Physical Review E, 66(5). doi:10.1103/physreve.66.056115Lipsitch, M., Cohen, T., Cooper, B., Robins, J. M., Ma, S., James, L., … Murray, M. (2003). Transmission Dynamics and Control of Severe Acute Respiratory Syndrome. Science, 300(5627), 1966-1970. doi:10.1126/science.1086616Hellewell, J., Abbott, S., Gimma, A., Bosse, N. I., Jarvis, C. I., Russell, T. W., … van Zandvoort, K. (2020). Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. The Lancet Global Health, 8(4), e488-e496. doi:10.1016/s2214-109x(20)30074-7Farrahi, K., Emonet, R., & Cebrian, M. (2014). Epidemic Contact Tracing via Communication Traces. PLoS ONE, 9(5), e95133. doi:10.1371/journal.pone.0095133Yang, H.-X., Wang, W.-X., Lai, Y.-C., & Wang, B.-H. (2012). Traffic-driven epidemic spreading on networks of mobile agents. EPL (Europhysics Letters), 98(6), 68003. doi:10.1209/0295-5075/98/68003Anglemyer, A., Moore, T. H., Parker, L., Chambers, T., Grady, A., Chiu, K., … Bero, L. (2020). Digital contact tracing technologies in epidemics: a rapid review. Cochrane Database of Systematic Reviews, 2020(8). doi:10.1002/14651858.cd013699Braithwaite, I., Callender, T., Bullock, M., & Aldridge, R. W. (2020). Automated and partly automated contact tracing: a systematic review to inform the control of COVID-19. The Lancet Digital Health, 2(11), e607-e621. doi:10.1016/s2589-7500(20)30184-9Ferretti, L., Wymant, C., Kendall, M., Zhao, L., Nurtay, A., Abeler-Dörner, L., … Fraser, C. (2020). Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science, 368(6491). doi:10.1126/science.abb6936Cencetti, G., Santin, G., Longa, A., Pigani, E., Barrat, A., Cattuto, C., … Lepri, B. (2020). Digital proximity tracing on empirical contact networks for pandemic control. doi:10.1101/2020.05.29.20115915Kretzschmar, M. E., Rozhnova, G., Bootsma, M., van Boven, M., van de Wijgert, J., & Bonten, M. (2020). Time is of the essence: impact of delays on effectiveness of contact tracing for COVID-19, a modelling study. doi:10.1101/2020.05.09.20096289Lambert, A. (2020). A mathematically rigorous assessment of the efficiency of quarantining and contact tracing in curbing the COVID-19 epidemic. doi:10.1101/2020.05.04.20091009Sattler, F., Ma, J., Wagner, P., Neumann, D., Wenzel, M., Schäfer, R., … Wiegand, T. (2020). Risk estimation of SARS-CoV-2 transmission from bluetooth low energy measurements. npj Digital Medicine, 3(1). doi:10.1038/s41746-020-00340-0Coronavirus: How to Do Testing and Contact Tracinghttps://medium.com/@tomaspueyoLi, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., & Shaman, J. (2020). Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science, 368(6490), 489-493. doi:10.1126/science.abb322

    COVID-19 pandemic and social distancing : economic, psychological, family, and technological effects

    Get PDF
    Introduction: The concept of social isolation is currently understood as a measure of epidemiological containment that aims to reduce the speed of spread of the disease, enabling health services to prepare their resources to cope with the likely increase in demand, while also seeking to provide additional protection to groups considered to be at higher risk. Objective: The present narrative review aims to compile and synthesize the literature related to social isolation produced during the COVID-19 pandemic in 2020. Method: This study is a narrative review of the literature on social isolation in the context of the COVID19 pandemic. Results: 73 publications were included for full-text reading and were classified into the following categories: levels of social isolation, economic effects, family relationships, health system, mental health of the population, and use of technology. Conclusions: It is necessary to plan an escalation of responses to the consequences of the pandemic, especially in view of the increased demand on the health sector and social services. The negative effects of social isolation can be prevented by public policies that offer a response to the economic recession, maintenance of social work, encouragement of quality care in mental health services, and community support for vulnerable families

    From public health policy to impact for COVID-19: a multi-country case study in Switzerland, Spain, Iran and Pakistan

    Get PDF
    Objectives: With the application of a systems thinking lens, we aimed to assess the national COVID-19 response across health systems components in Switzerland, Spain, Iran, and Pakistan. Methods: We conducted four case studies on the policy response of national health systems to the early phase of the COVID-19 pandemic. Selected countries include different health system typologies. We collected data prospectively for the period of January-July 2020 on 17 measures of the COVID-19 response recommended by the WHO that encompassed all health systems domains (governance, financing, health workforce, information, medicine and technology and service delivery). We further monitored contextual factors influencing their adoption or deployment. Results: The policies enacted coincided with a decrease in the COVID-19 transmission. However, there was inadequate communication and a perception that the measures were adverse to the economy, weakening political support for their continuation and leading to a rapid resurgence in transmission. Conclusion: Social pressure, religious beliefs, governance structure and level of administrative decentralization or global economic sanctions played a major role in how countries' health systems could respond to the pandemic

    Digital contact tracing/notification for SARS-CoV-2: navigating six points of failure

    Full text link
    Digital contact tracing/notification was initially hailed as a promising strategy to combat SARS-CoV-2, but in most jurisdictions it did not live up to its promise. To avert a given transmission event, both parties must have adopted the tech, it must detect the contact, the primary case must be promptly diagnosed, notifications must be triggered, and the secondary case must change their behavior to avoid the focal tertiary transmission event. If we approximate these as independent events, achieving a 26% reduction in R(t) would require 80% success rates at each of these six points of failure. Here we review the six failure rates experienced by a variety of digital contact tracing/notification schemes, including Singapore's TraceTogether, India's Aarogya Setu, and leading implementations of the Google Apple Exposure Notification system. This leads to a number of recommendations, e.g. that tracing/notification apps be multi-functional and integrated with testing, manual contact tracing, and the gathering of critical scientific data, and that the narrative be framed in terms of user autonomy rather than user privacy

    Online Radicalization Case Study of a Mass Shooting: the Payton Gendron Manifesto

    Get PDF
    On May 14th, 2022, 18-year-old Payton S. Gendron of Conklin, New York, drove his car more than 200 miles to a predominantly black neighborhood in Buffalo, New York. At around 2:30 p.m., Gendron arrived at a Tops supermarket wearing body armor, tactical gear and a helmet with a video camera attached. He utilized the camera to livestream the event and carried an AR-15 semi-automatic rifle because of its proven deadly nature. He began firing his assaultrifle in the parking lot of the supermarket, killing three victims. He then went inside the store where he killed a security guard and nine other shoppers before surrendering to police

    Data-Driven Epidemic Intelligence Strategies Based on Digital Proximity Tracing Technologies in the Fight against COVID-19 in Cities

    Get PDF
    In a modern pandemic outbreak, where collective threats require global strategies and local operational defence applications, data-driven solutions for infection tracing and forecasting epidemic trends are crucial to achieve sustainable and socially resilient cities. Indeed, the need for monitoring, containing, and mitigating the ongoing COVID-19 pandemic has generated a great deal of interest in Digital Proximity Tracing Technology (DPTT) on smartphones, as well as their function and effectiveness and insights of population acceptance. This paper introduces and compares different Data-Driven Epidemic Intelligence Strategies (DDEIS) developed on DPTTs. It aims to clarify to what extent DDEIS could be effective and both technologically and socially suitable in reaching the objective of a swift return to normality for cities, guaranteeing public health safety and minimizing the risk of epidemic resurgence. It assesses key advantages and limits in supporting both individual decision-making and policy-making, considering the role of human behaviour. Specifically, an online survey carried out in Italy revealed user preferences for DPTTs and provided preliminary data for an SEIR (Susceptible–Exposed–Infectious–Recovered) epidemiological model. This was developed to evaluate the impact of DDEIS on COVID-19 spread dynamics, and results are presented together with an evaluation of potential drawbacks
    corecore