426 research outputs found

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Microgrids/Nanogrids Implementation, Planning, and Operation

    Get PDF
    Today’s power system is facing the challenges of increasing global demand for electricity, high-reliability requirements, the need for clean energy and environmental protection, and planning restrictions. To move towards a green and smart electric power system, centralized generation facilities are being transformed into smaller and more distributed ones. As a result, the microgrid concept is emerging, where a microgrid can operate as a single controllable system and can be viewed as a group of distributed energy loads and resources, which can include many renewable energy sources and energy storage systems. The energy management of a large number of distributed energy resources is required for the reliable operation of the microgrid. Microgrids and nanogrids can allow for better integration of distributed energy storage capacity and renewable energy sources into the power grid, therefore increasing its efficiency and resilience to natural and technical disruptive events. Microgrid networking with optimal energy management will lead to a sort of smart grid with numerous benefits such as reduced cost and enhanced reliability and resiliency. They include small-scale renewable energy harvesters and fixed energy storage units typically installed in commercial and residential buildings. In this challenging context, the objective of this book is to address and disseminate state-of-the-art research and development results on the implementation, planning, and operation of microgrids/nanogrids, where energy management is one of the core issues

    Predictive control strategies applied to the management of a supply chain

    Get PDF

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches

    Control strategy of grid connected power converter based on virtual flux approach

    Get PDF
    A la portada consta el nom del programa interuniversitari: Joint Doctoral Programme in Electric Energy Systems [by the] Universidad de Málaga, Universidad de Sevilla, Universidad del País Vasco/Euskal Erriko Unibertsitatea i Universitat Politècnica de CatalunyaDistributed Generation (DG) provides an alternative to the Centralized Generation (CG) by means of generating electricity near to the end user of power with the employment of small-scale technologies to produce electricity, mainly using Renewable Energy Sources (RES). The prospects of renewable energy integration during the next years are still very optimistic. This PhD dissertation is made to provide an alternative control framework for the grid connected power converter by adopting the virtual flux concept in the control layer. This dissertation can be divided into three main topics. The 1st topic presents the voltage sensorless control system for the grid-connected power converter. The control system presented is done without depending on AC-voltage measurement where the grid synchronization is based on the Virtual Flux (VF) estimation. In this regard, the Frequency Locked Loop (FLL) is used in conjunction with the estimation scheme to make the system fully adaptive to the frequency changes. This voltage sensorless application is useful for reducing cost and complexity of the control hardware. It is also can be utilized in case of limited reliability or availability of voltage measurements at the intended point of synchronization to the grid. Considering that most previous studies are based on the VF estimation for the case of power converter connected to the grid through the L-filter or LC-filter, this dissertation is focused on the power converter connected to the grid through the LCL filter. The Proportional Resonant (PR) current controller is adopted in the inner loop control of the power electronics-based converter to test the performance of such system. Another control method based on VF synchronization that permits to control the active and reactive power delivery in a remote point of the grid is also presented in this dissertation. This is due to the fact that the VF is implemented that the voltage in a remote point of the line can be estimated. As it will be shown in simulations and experiments, the proposed control scheme provides a good tracking and dynamic performance under step changes in the reference power. The fast synchronization and the smooth reference tracking achieved in transient conditions have demonstrated the effectiveness of the Dual Second Order Generalized Integrator controlled as Quadrature Signal Generator (DSOGI-QSG) and also the current controller used in the proposed system. In addition to the power control itself, this study could also benefit the frequency and the voltage regulation methods in distributed generation applications as for instance in microgrid. Considering the fact that the grid connected power converter can be controlled as a virtual synchronous generator where the flux is a variable to be used for controlling its operation, this dissertation also presents a Virtual Synchronous Flux Controller (VSFC) as a new control framework of the grid connected power converter. In this regard, a new control strategy in the inner loop control of the power converter will be proposed. The main components of the outer loop control of VSFC are based on the active and reactive power control. The results presented show that the VSFC works well to control the active and reactive power without considering any synchronization system. The inner loop control is able to work as it is required, and the measurement flux is able to track the reference flux without any significant delays. All the work presented in this dissertation are supported by mathematical and simulation analysis. In order to endorse the conclusions achieved, a complete experimental validations have been conducted before wrapping this dissertation with a conclusion and recommendation for future enhancement of the control strategies that have been presented.Postprint (published version
    corecore