14,104 research outputs found

    Topics in social network analysis and network science

    Full text link
    This chapter introduces statistical methods used in the analysis of social networks and in the rapidly evolving parallel-field of network science. Although several instances of social network analysis in health services research have appeared recently, the majority involve only the most basic methods and thus scratch the surface of what might be accomplished. Cutting-edge methods using relevant examples and illustrations in health services research are provided

    The use of multilayer network analysis in animal behaviour

    Get PDF
    Network analysis has driven key developments in research on animal behaviour by providing quantitative methods to study the social structures of animal groups and populations. A recent formalism, known as \emph{multilayer network analysis}, has advanced the study of multifaceted networked systems in many disciplines. It offers novel ways to study and quantify animal behaviour as connected 'layers' of interactions. In this article, we review common questions in animal behaviour that can be studied using a multilayer approach, and we link these questions to specific analyses. We outline the types of behavioural data and questions that may be suitable to study using multilayer network analysis. We detail several multilayer methods, which can provide new insights into questions about animal sociality at individual, group, population, and evolutionary levels of organisation. We give examples for how to implement multilayer methods to demonstrate how taking a multilayer approach can alter inferences about social structure and the positions of individuals within such a structure. Finally, we discuss caveats to undertaking multilayer network analysis in the study of animal social networks, and we call attention to methodological challenges for the application of these approaches. Our aim is to instigate the study of new questions about animal sociality using the new toolbox of multilayer network analysis.Comment: Thoroughly revised; title changed slightl

    Social Interactions vs Revisions, What is important for Promotion in Wikipedia?

    Full text link
    In epistemic community, people are said to be selected on their knowledge contribution to the project (articles, codes, etc.) However, the socialization process is an important factor for inclusion, sustainability as a contributor, and promotion. Finally, what does matter to be promoted? being a good contributor? being a good animator? knowing the boss? We explore this question looking at the process of election for administrator in the English Wikipedia community. We modeled the candidates according to their revisions and/or social attributes. These attributes are used to construct a predictive model of promotion success, based on the candidates's past behavior, computed thanks to a random forest algorithm. Our model combining knowledge contribution variables and social networking variables successfully explain 78% of the results which is better than the former models. It also helps to refine the criterion for election. If the number of knowledge contributions is the most important element, social interactions come close second to explain the election. But being connected with the future peers (the admins) can make the difference between success and failure, making this epistemic community a very social community too

    Educational commitment and social networking: The power of informal networks

    Full text link
    The lack of an engaging pedagogy and the highly competitive atmosphere in introductory science courses tend to discourage students from pursuing science, technology, engineering, and mathematics (STEM) majors. Once in a STEM field, academic and social integration has been long thought to be important for students' persistence. Yet, it is rarely investigated. In particular, the relative impact of in-class and out-of-class interactions remains an open issue. Here, we demonstrate that, surprisingly, for students whose grades fall in the "middle of the pack," the out-of-class network is the most significant predictor of persistence. To do so, we use logistic regression combined with Akaike's information criterion to assess in- and out-of-class networks, grades, and other factors. For students with grades at the very top (and bottom), final grade, unsurprisingly, is the best predictor of persistence---these students are likely already committed (or simply restricted from continuing) so they persist (or drop out). For intermediate grades, though, only out-of-class closeness---a measure of one's immersion in the network---helps predict persistence. This does not negate the need for in-class ties. However, it suggests that, in this cohort, only students that get past the convenient in-class interactions and start forming strong bonds outside of class are or become committed to their studies. Since many students are lost through attrition, our results suggest practical routes for increasing students' persistence in STEM majors.Comment: 12 pages, 2 figures, 8 tables, 6 pages of Supplementary Material

    Getting Into Networks and Clusters: Evidence on the GNSS composite knowledge process in (and from) Midi-Pyrénées

    Get PDF
    This paper aims to contribute to the empirical identification of clusters by proposing methodological issues based on network analysis. We start with the detection of a composite knowledge process rather than a territorial one stricto sensu. Such a consideration allows us to avoid the overestimation of the role played by geographical proximity between agents, and grasp its ambivalence in knowledge relations. Networks and clusters correspond to the complex aggregation process of bi or n-lateral relations in which agents can play heterogeneous structural roles. Their empirical reconstitution requires thus to gather located relational data, whereas their structural properties analysis requires to compute a set of indexes developed in the field of the social network analysis. Our theoretical considerations are tested in the technological field of GNSS (Global Satellite Navigation Systems). We propose a sample of knowledge relations based on collaborative R&D projects and discuss how this sample is shaped and why we can assume its representativeness. The network we obtain allows us to show how the composite knowledge process gives rise to a structure with a peculiar combination of local and distant relations. Descriptive statistics and structural properties show the influence or the centrality of certain agents in the aggregate structure, and permit to discuss the complementarities between their heterogeneous knowledge profiles. Quantitative results are completed and confirmed by an interpretative discussion based on a run of semi-structured interviews. Concluding remarks provide theoretical feedbacks.Knowledge, Networks, Economic Geography, Cluster, GNSS
    • 

    corecore