1,225 research outputs found

    Mitigating Misinformation Spreading in Social Networks Via Edge Blocking

    Full text link
    The wide adoption of social media platforms has brought about numerous benefits for communication and information sharing. However, it has also led to the rapid spread of misinformation, causing significant harm to individuals, communities, and society at large. Consequently, there has been a growing interest in devising efficient and effective strategies to contain the spread of misinformation. One popular countermeasure is blocking edges in the underlying network. We model the spread of misinformation using the classical Independent Cascade model and study the problem of minimizing the spread by blocking a given number of edges. We prove that this problem is computationally hard, but we propose an intuitive community-based algorithm, which aims to detect well-connected communities in the network and disconnect the inter-community edges. Our experiments on various real-world social networks demonstrate that the proposed algorithm significantly outperforms the prior methods, which mostly rely on centrality measures

    A Survey on Centrality Metrics and Their Implications in Network Resilience

    Full text link
    Centrality metrics have been used in various networks, such as communication, social, biological, geographic, or contact networks. In particular, they have been used in order to study and analyze targeted attack behaviors and investigated their effect on network resilience. Although a rich volume of centrality metrics has been developed for decades, a limited set of centrality metrics have been commonly in use. This paper aims to introduce various existing centrality metrics and discuss their applicabilities and performance based on the results obtained from extensive simulation experiments to encourage their use in solving various computing and engineering problems in networks.Comment: Main paper: 36 pages, 2 figures. Appendix 23 pages,45 figure

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Studying Fake News via Network Analysis: Detection and Mitigation

    Full text link
    Social media for news consumption is becoming increasingly popular due to its easy access, fast dissemination, and low cost. However, social media also enable the wide propagation of "fake news", i.e., news with intentionally false information. Fake news on social media poses significant negative societal effects, and also presents unique challenges. To tackle the challenges, many existing works exploit various features, from a network perspective, to detect and mitigate fake news. In essence, news dissemination ecosystem involves three dimensions on social media, i.e., a content dimension, a social dimension, and a temporal dimension. In this chapter, we will review network properties for studying fake news, introduce popular network types and how these networks can be used to detect and mitigation fake news on social media.Comment: Submitted as a invited book chapter in Lecture Notes in Social Networks, Springer Pres
    • …
    corecore