186 research outputs found

    Angular Power Distribution Measurements and Modelling of Outdoor Urban Environment Using Ray-tracing At 2 and 18 GH

    Get PDF

    5G mmwave positioning for vehicular networks

    Get PDF
    5G technologies present a new paradigm to provide connectivity to vehicles, in support of high data-rate services, complementing existing inter-vehicle communication standards based on IEEE 802.11p. As we argue, the specific signal characteristics of 5G communication turn out to be highly conducive for vehicle positioning. Hence, 5G can work in synergy with existing on-vehicle positioning and mapping systems to provide redundancy for certain applications, in particular automated driving. This article provides an overview of the evolution of cellular positioning and discusses the key properties of 5G as they relate to vehicular positioning. Open research challenges are presented

    A Review of Indoor Millimeter Wave Device-based Localization and Device-free Sensing Technologies and Applications

    Full text link
    The commercial availability of low-cost millimeter wave (mmWave) communication and radar devices is starting to improve the penetration of such technologies in consumer markets, paving the way for large-scale and dense deployments in fifth-generation (5G)-and-beyond as well as 6G networks. At the same time, pervasive mmWave access will enable device localization and device-free sensing with unprecedented accuracy, especially with respect to sub-6 GHz commercial-grade devices. This paper surveys the state of the art in device-based localization and device-free sensing using mmWave communication and radar devices, with a focus on indoor deployments. We first overview key concepts about mmWave signal propagation and system design. Then, we provide a detailed account of approaches and algorithms for localization and sensing enabled by mmWaves. We consider several dimensions in our analysis, including the main objectives, techniques, and performance of each work, whether each research reached some degree of implementation, and which hardware platforms were used for this purpose. We conclude by discussing that better algorithms for consumer-grade devices, data fusion methods for dense deployments, as well as an educated application of machine learning methods are promising, relevant and timely research directions.Comment: 43 pages, 13 figures. Accepted in IEEE Communications Surveys & Tutorials (IEEE COMST

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF

    Measurement-based characterization of 15 GHz propagation channels in a laboratory environment

    Get PDF
    corecore