19,410 research outputs found

    Systematic methods for the computation of the directional fields and singular points of fingerprints

    Get PDF
    The first subject of the paper is the estimation of a high resolution directional field of fingerprints. Traditional methods are discussed and a method, based on principal component analysis, is proposed. The method not only computes the direction in any pixel location, but its coherence as well. It is proven that this method provides exactly the same results as the "averaged square-gradient method" that is known from literature. Undoubtedly, the existence of a completely different equivalent solution increases the insight into the problem's nature. The second subject of the paper is singular point detection. A very efficient algorithm is proposed that extracts singular points from the high-resolution directional field. The algorithm is based on the Poincare index and provides a consistent binary decision that is not based on postprocessing steps like applying a threshold on a continuous resemblance measure for singular points. Furthermore, a method is presented to estimate the orientation of the extracted singular points. The accuracy of the methods is illustrated by experiments on a live-scanned fingerprint databas

    Fingerprint of Galactic Loop I on polarized microwave foregrounds

    Full text link
    Context: Currently, detection of the primordial gravitational waves by the B-mode of Cosmic Microwave Background (CMB) is primarily limited by our knowledge of the polarized microwave foreground emissions. Thus improvements of the foreground analysis are necessary. As revealed in~\cite{2018arXiv180410382L}, the E-mode and B-mode of the polarized foreground have noticeable different properties, both in morphology and frequency spectrum, suggesting that they arise from different physical processes, and need to be studied separately. Aims: I will study the polarized emission from Galactic loops, especially Loop I, and mainly focus on the following issues: Does it contribute predominantly to the E-mode or B-mode? In which frequency bands and in which sky regions can it be identified? Methods: Based on a well known result about the magnetic field alignment in supernova explosions, a theoretical expectation is established that the loop polarizations should be predominantly E-mode. In particular, the expected polarization angles of Loop I are compared with those from the real microwave band data of WMAP and Planck. Results and conclusions: The comparison between model and data shows remarkable consistency between data and expectation at all bands and for a large area of the sky. This result suggests that the polarized emission of Galactic Loop I is a major polarized component in all microwave bands from 23 to 353 GHz, and a considerable part of the polarized foreground is likely originated from a local bubble associated with Loop I, instead of the far more distant Galactic emission. The result also provides a possible way to explain the reported E-to-B excess~\citep{2016A&A...586A.133P} by contribution of the loops. Finally, this work may also provide the first geometrical evidence that the Earth was hit by a supernova explosion.Comment: Updated using the Planck 2018 data, and the main conclusion is now even better supporte

    How Unique is Your .onion? An Analysis of the Fingerprintability of Tor Onion Services

    Full text link
    Recent studies have shown that Tor onion (hidden) service websites are particularly vulnerable to website fingerprinting attacks due to their limited number and sensitive nature. In this work we present a multi-level feature analysis of onion site fingerprintability, considering three state-of-the-art website fingerprinting methods and 482 Tor onion services, making this the largest analysis of this kind completed on onion services to date. Prior studies typically report average performance results for a given website fingerprinting method or countermeasure. We investigate which sites are more or less vulnerable to fingerprinting and which features make them so. We find that there is a high variability in the rate at which sites are classified (and misclassified) by these attacks, implying that average performance figures may not be informative of the risks that website fingerprinting attacks pose to particular sites. We analyze the features exploited by the different website fingerprinting methods and discuss what makes onion service sites more or less easily identifiable, both in terms of their traffic traces as well as their webpage design. We study misclassifications to understand how onion service sites can be redesigned to be less vulnerable to website fingerprinting attacks. Our results also inform the design of website fingerprinting countermeasures and their evaluation considering disparate impact across sites.Comment: Accepted by ACM CCS 201

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future
    corecore