1,062 research outputs found

    Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    Get PDF
    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit

    Exact Results for the Kuramoto Model with a Bimodal Frequency Distribution

    Full text link
    We analyze a large system of globally coupled phase oscillators whose natural frequencies are bimodally distributed. The dynamics of this system has been the subject of long-standing interest. In 1984 Kuramoto proposed several conjectures about its behavior; ten years later, Crawford obtained the first analytical results by means of a local center manifold calculation. Nevertheless, many questions have remained open, especially about the possibility of global bifurcations. Here we derive the system's complete stability diagram for the special case where the bimodal distribution consists of two equally weighted Lorentzians. Using an ansatz recently discovered by Ott and Antonsen, we show that in this case the infinite-dimensional problem reduces exactly to a flow in four dimensions. Depending on the parameters and initial conditions, the long-term dynamics evolves to one of three states: incoherence, where all the oscillators are desynchronized; partial synchrony, where a macroscopic group of phase-locked oscillators coexists with a sea of desynchronized ones; and a standing wave state, where two counter-rotating groups of phase-locked oscillators emerge. Analytical results are presented for the bifurcation boundaries between these states. Similar results are also obtained for the case in which the bimodal distribution is given by the sum of two Gaussians.Comment: 28 pages, 7 figures; submitted to Phys. Rev. E Added comment

    Hopf bifurcations in time-delay systems with band-limited feedback

    Full text link
    We investigate the steady-state solution and its bifurcations in time-delay systems with band-limited feedback. This is a first step in a rigorous study concerning the effects of AC-coupled components in nonlinear devices with time-delayed feedback. We show that the steady state is globally stable for small feedback gain and that local stability is lost, generically, through a Hopf bifurcation for larger feedback gain. We provide simple criteria that determine whether the Hopf bifurcation is supercritical or subcritical based on the knowledge of the first three terms in the Taylor-expansion of the nonlinearity. Furthermore, the presence of double-Hopf bifurcations of the steady state is shown, which indicates possible quasiperiodic and chaotic dynamics in these systems. As a result of this investigation, we find that AC-coupling introduces fundamental differences to systems of Ikeda-type [Ikeda et al., Physica D 29 (1987) 223-235] already at the level of steady-state bifurcations, e.g. bifurcations exist in which limit cycles are created with periods other than the fundamental ``period-2'' mode found in Ikeda-type systems.Comment: 32 pages, 5 figures, accepted for publication in Physica D: Nonlinear Phenomen

    Coarse Stability and Bifurcation Analysis Using Stochastic Simulators: Kinetic Monte Carlo Examples

    Full text link
    We implement a computer-assisted approach that, under appropriate conditions, allows the bifurcation analysis of the coarse dynamic behavior of microscopic simulators without requiring the explicit derivation of closed macroscopic equations for this behavior. The approach is inspired by the so-called time-step per based numerical bifurcation theory. We illustrate the approach through the computation of both stable and unstable coarsely invariant states for Kinetic Monte Carlo models of three simple surface reaction schemes. We quantify the linearized stability of these coarsely invariant states, perform pseudo-arclength continuation, detect coarse limit point and coarse Hopf bifurcations and construct two-parameter bifurcation diagrams.Comment: 26 pages, 5 figure

    Multiple Steady States, Limit Cycles and Chaotic Attractors in Evolutionary Games with Logit Dynamics

    Get PDF
    This paper investigates, by means of simple, three and four strategy games, the occurrence of periodic and chaotic behaviour in a smooth version of the Best Response Dynamics, the Logit Dynamics. The main finding is that, unlike Replicator Dynamics, generic Hopf bifurcation and thus, stable limit cycles, do occur under the Logit Dynamics, even for three strategy games. Moreover, we show that the Logit Dynamics displays another bifurcation which cannot to occur under the Replicator Dynamics: the fold catastrophe. Finally, we find, in a four strategy game, a period-doubling route to chaotic dynamics under a 'weighted' version of the Logit Dynamics.

    Switching to nonhyperbolic cycles from codimension two bifurcations of equilibria of delay differential equations

    Get PDF
    In this paper we perform the parameter-dependent center manifold reduction near the generalized Hopf (Bautin), fold-Hopf, Hopf-Hopf and transcritical-Hopf bifurcations in delay differential equations (DDEs). This allows us to initialize the continuation of codimension one equilibria and cycle bifurcations emanating from these codimension two bifurcation points. The normal form coefficients are derived in the functional analytic perturbation framework for dual semigroups (sun-star calculus) using a normalization technique based on the Fredholm alternative. The obtained expressions give explicit formulas which have been implemented in the freely available numerical software package DDE-BifTool. While our theoretical results are proven to apply more generally, the software implementation and examples focus on DDEs with finitely many discrete delays. Together with the continuation capabilities of DDE-BifTool, this provides a powerful tool to study the dynamics near equilibria of such DDEs. The effectiveness is demonstrated on various models

    Aspects of Bifurcation Theory for Piecewise-Smooth, Continuous Systems

    Full text link
    Systems that are not smooth can undergo bifurcations that are forbidden in smooth systems. We review some of the phenomena that can occur for piecewise-smooth, continuous maps and flows when a fixed point or an equilibrium collides with a surface on which the system is not smooth. Much of our understanding of these cases relies on a reduction to piecewise linearity near the border-collision. We also review a number of codimension-two bifurcations in which nonlinearity is important.Comment: pdfLaTeX, 9 figure

    Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. I. The Dynamics of Time Discretization and Its Implications for Algorithm Development in Computational Fluid Dynamics

    Get PDF
    The goal of this paper is to utilize the theory of nonlinear dynamics approach to investigate the possible sources of errors and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic and parabolic partial differential equations terms. This interdisciplinary research belongs to a subset of a new field of study in numerical analysis sometimes referred to as the dynamics of numerics and the numerics of dynamics. At the present time, this new interdisciplinary topic is still the property of an isolated discipline with all too little effort spent in pointing out an underlying generality that could make it adaptable to diverse fields of applications. This is the first of a series of research papers under the same topic. Our hope is to reach researchers in the fields of computational fluid dynamics (CFD) and, in particular, hypersonic and combustion related CFD. By simple examples (in which the exact solutions of the governing equations are known), the application of the apparently straightforward numerical technique to genuinely nonlinear problems can be shown to lead to incorrect or misleading results. One striking phenomenon is that with the same initial data, the continuum and its discretized counterpart can asymptotically approach different stable solutions. This behavior is especially important for employing a time-dependent approach to the steady state since the initial data are usually not known and a freest ream condition or an intelligent guess for the initial conditions is often used. With the unique property of the different dependence of the solution on initial data for the partial differential equation and the discretized counterpart, it is not easy to delineate the true physics from numerical artifacts when numerical methods are the sole source of solution procedure for the continuum. Part I concentrates on the dynamical behavior of time discretization for scalar nonlinear ordinary differential equations in order to motivate this new yet unconventional approach to algorithm development in CFD and to serve as an introduction for parts II and III of the same series of research papers
    corecore