350 research outputs found

    An Investigation into Neuromorphic ICs using Memristor-CMOS Hybrid Circuits

    Full text link
    The memristance of a memristor depends on the amount of charge flowing through it and when current stops flowing through it, it remembers the state. Thus, memristors are extremely suited for implementation of memory units. Memristors find great application in neuromorphic circuits as it is possible to couple memory and processing, compared to traditional Von-Neumann digital architectures where memory and processing are separate. Neural networks have a layered structure where information passes from one layer to another and each of these layers have the possibility of a high degree of parallelism. CMOS-Memristor based neural network accelerators provide a method of speeding up neural networks by making use of this parallelism and analog computation. In this project we have conducted an initial investigation into the current state of the art implementation of memristor based programming circuits. Various memristor programming circuits and basic neuromorphic circuits have been simulated. The next phase of our project revolved around designing basic building blocks which can be used to design neural networks. A memristor bridge based synaptic weighting block, a operational transconductor based summing block were initially designed. We then designed activation function blocks which are used to introduce controlled non-linearity. Blocks for a basic rectified linear unit and a novel implementation for tan-hyperbolic function have been proposed. An artificial neural network has been designed using these blocks to validate and test their performance. We have also used these fundamental blocks to design basic layers of Convolutional Neural Networks. Convolutional Neural Networks are heavily used in image processing applications. The core convolutional block has been designed and it has been used as an image processing kernel to test its performance.Comment: Bachelor's thesi

    A Decade of Neural Networks: Practical Applications and Prospects

    Get PDF
    The Jet Propulsion Laboratory Neural Network Workshop, sponsored by NASA and DOD, brings together sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and application prospects. While the speed and computing power of microprocessors continue to grow at an ever-increasing pace, the demand to intelligently and adaptively deal with the complex, fuzzy, and often ill-defined world around us remains to a large extent unaddressed. Powerful, highly parallel computing paradigms such as neural networks promise to have a major impact in addressing these needs. Papers in the workshop proceedings highlight benefits of neural networks in real-world applications compared to conventional computing techniques. Topics include fault diagnosis, pattern recognition, and multiparameter optimization

    Retinal drug delivery: rethinking outcomes for the efficient replication of retinal behavior

    Get PDF
    The retina is a highly organized structure that is considered to be "an approachable part of the brain." It is attracting the interest of development scientists, as it provides a model neurovascular system. Over the last few years, we have been witnessing significant development in the knowledge of the mechanisms that induce the shape of the retinal vascular system, as well as knowledge of disease processes that lead to retina degeneration. Knowledge and understanding of how our vision works are crucial to creating a hardware-adaptive computational model that can replicate retinal behavior. The neuronal system is nonlinear and very intricate. It is thus instrumental to have a clear view of the neurophysiological and neuroanatomic processes and to take into account the underlying principles that govern the process of hardware transformation to produce an appropriate model that can be mapped to a physical device. The mechanistic and integrated computational models have enormous potential toward helping to understand disease mechanisms and to explain the associations identified in large model-free data sets. The approach used is modulated and based on different models of drug administration, including the geometry of the eye. This work aimed to review the recently used mathematical models to map a directed retinal network.The authors acknowledge the financial support received from the Portuguese Science and Technology Foundation (FCT/MCT) and the European Funds (PRODER/COMPETE) for the project UIDB/04469/2020 (strategic fund), co-financed by FEDER, under the Partnership Agreement PT2020. The authors also acknowledge FAPESP – São Paulo Research Foundation, for the financial support for the publication of the article.info:eu-repo/semantics/publishedVersio

    Computer vision algorithms on reconfigurable logic arrays

    Full text link

    Eine Test- und Ansteuerschaltung fĂŒr eine neuartige 3D Verbindungstechnologie

    Get PDF
    In der vorliegenden Arbeit wird eine Built-In Self-Test Schaltung (BIST) vorgestellt, welche die vertikalen Inter-Chip-Verbindungen in einer neuartigen 3D Schaltungstechnologie auf ihre FunktionalitĂ€t zur DatenĂŒbertragung ĂŒberprĂŒft. Die 3D Technologie beruht auf der Stapelung mehrerer aktiver Silizium-CMOS-ICs, welche durch das Siliziumsubstrat hindurch vertikal miteinander elektrisch verbunden sind. Bei diesen Vias sind die zu erwartenden Defekte hochohmige Verbindungen und KurzschlĂŒsse. </p><p style=&quot;line-height: 20px;&quot;> Die entwickelte Testschaltung ermöglicht es, beliebige Konstellationen von vertikalen Verbindungen auf Fehler zu untersuchen, und das Ergebnis entweder zur Analyse der 3D Technologie auszulesen oder innerhalb des Chipstapels zu verwenden, um defekte Vias zu umgehen. Die Schaltung wurde in einer 0,13ÎŒm Technologie entworfen und simuliert. Ein Testchip ist momentan in Produktion

    GENETIC FUZZY FILTER BASED ON MAD AND ROAD TO REMOVE MIXED IMPULSE NOISE

    Get PDF
    In this thesis, a genetic fuzzy image filtering based on rank-ordered absolute differences (ROAD) and median of the absolute deviations from the median (MAD) is proposed. The proposed method consists of three components, including fuzzy noise detection system, fuzzy switching scheme filtering, and fuzzy parameters optimization using genetic algorithms (GA) to perform efficient and effective noise removal. Our idea is to utilize MAD and ROAD as measures of noise probability of a pixel. Fuzzy inference system is used to justify the degree of which a pixel can be categorized as noisy. Based on the fuzzy inference result, the fuzzy switching scheme that adopts median filter as the main estimator is applied to the filtering. The GA training aims to find the best parameters for the fuzzy sets in the fuzzy noise detection. From the experimental results, the proposed method has successfully removed mixed impulse noise in low to medium probabilities, while keeping the uncorrupted pixels less affected by the median filtering. It also surpasses the other methods, either classical or soft computing-based approaches to impulse noise removal, in MAE and PSNR evaluations. It can also remove salt-and-pepper and uniform impulse noise well

    Linear Operation of Switch-Mode Outphasing Power Amplifiers

    Get PDF
    Radio transceivers are playing an increasingly important role in modern society. The ”connected” lifestyle has been enabled by modern wireless communications. The demand that has been placed on current wireless and cellular infrastructure requires increased spectral efficiency however this has come at the cost of power efficiency. This work investigates methods of improving wireless transceiver efficiency by enabling more efficient power amplifier architectures, specifically examining the role of switch-mode power amplifiers in macro cell scenarios. Our research focuses on the mechanisms within outphasing power amplifiers which prevent linear amplification. From the analysis it was clear that high power non-linear effects are correctable with currently available techniques however non-linear effects around the zero crossing point are not. As a result signal processing techniques for suppressing and avoiding non-linear operation in low power regions are explored. A novel method of digital pre-distortion is presented, and conventional techniques for linearisation are adapted for the particular needs of the outphasing power amplifier. More unconventional signal processing techniques are presented to aid linearisation of the outphasing power amplifier, both zero crossing and bandwidth expansion reduction methods are designed to avoid operation in nonlinear regions of the amplifiers. In combination with digital pre-distortion the techniques will improve linearisation efforts on outphasing systems with dynamic range and bandwidth constraints respectively. Our collaboration with NXP provided access to a digital outphasing power amplifier, enabling empirical analysis of non-linear behaviour and comparative analysis of behavioural modelling and linearisation efforts. The collaboration resulted in a bench mark for linear wideband operation of a digital outphasing power amplifier. The complimentary linearisation techniques, bandwidth expansion reduction and zero crossing reduction have been evaluated in both simulated and practical outphasing test benches. Initial results are promising and indicate that the benefits they provide are not limited to the outphasing amplifier architecture alone. Overall this thesis presents innovative analysis of the distortion mechanisms of the outphasing power amplifier, highlighting the sensitivity of the system to environmental effects. Practical and novel linearisation techniques are presented, with a focus on enabling wide band operation for modern communications standards

    Mixed-mode cellular array processor realization for analyzing brain electrical activity in epilepsy

    Get PDF
    This thesis deals with the realization of hardware that is capable of computing algorithms that can be described using the theory of polynomial cellular neural/nonlinear networks (CNNs). The goal is to meet the requirements of an algorithm for predicting the onset of an epileptic seizure. The analysis associated with this application requires extensive computation of data that consists of segments of brain electrical activity. Different types of computer architectures are overviewed. Since the algorithm requires operations in which data is manipulated locally, special emphasis is put on assessing different parallel architectures. An array computer is potentially able to perform local computational tasks effectively and rapidly. Based on the requirements of the algorithm, a mixed-mode CNN is proposed. A mixed-mode CNN combines analog and digital processing so that the couplings and the polynomial terms are implemented with analog blocks, whereas the integrator is digital. A/D and D/A converters are used to interface between the analog blocks and the integrator. Based on the mixed-mode CNN architecture a cellular array processor is realized. In the realized array processor the processing units are coupled with programmable polynomial (linear, quadratic and cubic) first neighborhood feedback terms. A 10 mm2, 1.027 million transistor cellular array processor, with 2×72 processing units and 36 layers of memory in each is manufactured using a 0.25 Όm digital CMOS process. The array processor can perform gray-scale Heun's integration of spatial convolutions with linear, quadratic and cubic activation functions for 72×72 data while keeping all I/O operations during processing local. One complete Heun's iteration round takes 166.4 Όs, while the power consumption during processing is 192 mW. Experimental results of statistical variations in the multipliers and polynomial circuits are shown. Descriptions regarding improvements in the design are also explained. The results of this thesis can be used to assess the suitability of the mixed-mode approach for implementing an implantable system for predicting epileptic seizures. The results can also be used to assess the suitability of the approach for implementing other applications.reviewe

    Synaptic weight modification and storage in hardware neural networks

    Get PDF
    In 2011 the International Technology Roadmap for Semiconductors, ITRS 2011, outlined how the semiconductor industry should proceed to pursue Moore’s Law past the 18nm generation. It envisioned a concept of ‘More than Moore’, in which existing semiconductor technologies can be exploited to enable the fabrication of diverse systems and in particular systems which integrate non-digital and biologically based functionality. A rapid expansion and growing interest in the fields of microbiology, electrophysiology, and computational neuroscience occurred. This activity has provided significant understanding and insight into the function and structure of the human brain leading to the creation of systems which mimic the operation of the biological nervous system. As the systems expand a need for small area, low power devices which replicate the important biological features of neural networks has been established to implement large scale networks. In this thesis work is presented which focuses on the modification and storage of synaptic weights in hardware neural networks. Test devices were incorporated on 3 chip runs; each chip was fabricated in a 0.35ÎŒm process from Austria MicroSystems (AMS) and used for parameter extraction, in accordance with the theoretical analysis presented. A compact circuit is presented which can implement STDP, and has advantages over current implementations in that the critical timing window for synaptic modification is implemented within the circuit. The duration of the critical timing window is set by the subthreshold current controlled by the voltage, Vleak, applied to transistor Mleak in the circuit. A physical model to predict the time window for plasticity to occur is formulated and the effects of process variations on the window is analysed. The STDP circuit is implemented using two dedicated circuit blocks, one for potentiation and one for depression where each block consists of 4 transistors and a polysilicon capacitor, and an area of 980”m2. SpectreS simulations of the back-annotated layout of the circuit and experimental results indicate that STDP with biologically plausible critical timing windows over the range 10”s to 100ms can be implemented. Theoretical analysis using parameters extracted from MOS test devices is used to describe the operation of each device and circuit presented. Simulation results and results obtained from fabricated devices confirm the validity of these designs and approaches. Both the WP and WD circuits have a power consumption of approximately 2.4mW, during a weight update. If no weight update occurs the resting currents within the device are in the nA range, thus each circuit has a power consumption of approximately 1”W. A floating gate, FG, device fabricated using a standard CMOS process is presented. This device is to be integrated with both the WP and WD STDP circuits. The FG device is designed to store negative charge on a FG to represent the synaptic weight of the associated synapse. Charge is added or removed from the FG via Fowler-Nordheim tunnelling. This thesis outlines the design criteria and theoretical operation of this device. A model of the charge storage characteristics is presented and verified using HFCV and PCV experimental results. Limited precision weights, LPW, and its potential use in hardware neural networks is also considered. LPW offers a potential solution in the quest to design a compact FG device for use with CTS. The algorithms presented in this thesis show that LPW allows for a reduction in the synaptic weight storage device while permitting the network to function as intended
    • 

    corecore