7,625 research outputs found

    Device-to-device based path selection for post disaster communication using hybrid intelligence

    Get PDF
    Public safety network communication methods are concurrence with emerging networks to provide enhanced strategies and services for catastrophe management. If the cellular network is damaged after a calamity, a new-generation network like the internet of things (IoT) is ready to assure network access. In this paper, we suggested a framework of hybrid intelligence to find and re-connect the isolated nodes to the functional area to save life. We look at a situation in which the devices in the hazard region can constantly monitor the radio environment to self-detect the occurrence of a disaster, switch to the device-to-device (D2D) communication mode, and establish a vital connection. The oscillating spider monkey optimization (OSMO) approach forms clusters of the devices in the disaster area to improve network efficiency. The devices in the secluded area use the cluster heads as relay nodes to the operational site. An oscillating particle swarm optimization (OPSO) with a priority-based path encoding technique is used for path discovery. The suggested approach improves the energy efficiency of the network by selecting a routing path based on the remaining energy of the device, channel quality, and hop count, thus increasing network stability and packet delivery

    Bioactive Self-Assembled Protein Nanosheets for Stem Cell-Based Biotechnologies

    Get PDF
    Tissue and stem cell culture methods have been dominated by glass and plastic substrates such as Tissue culture plastic. These solid substrates, although widely used, are associated with poor scalability for adherent stem cell expansion in systems such as 3D bioreactors and the design of parallel culture systems. Therefore, investigating strategies to bypass these obstacles in stem cell expansion is essential to enable the wider translation of stem cell technologies. An alternative strategy recently proposed consists in using a liquid surface instead, such as an oil, and associated oil droplets. Indeed, emulsions can be formed using protein nanosheets to stabilise oil/water interfaces to promote the adhesion of stem cells and enable their proliferation. These nanosheets exhibit enhanced interfacial mechanics and allow the introduction of bioactive components via recombinant protein expression to promote bioactivity. Beyond the application of resulting bioemulsions for the expansion of Mesenchymal stem cells, the impact of these bioactive interfaces on the differentiation of iPSCs and the development of cerebral organoids will be presented. The Bovine serum albumin protein was recombinantly modified to attach an N-terminal Avi-Tag, this was expressed and purified from the yeast P. pastoris expression system. The Avi-tag was then biotinylated in vitro by recombinantly expressed BirA. Emulsions of a specific size were formed using the newly biotinylated Bt-BSA protein and functionalized with a cascade of components to mimic cell-cell ligands, this resulted in bioemulsions with a bioactive surface that can interact with surrounding cells. These functionalised droplets were integrated into developing cerebral organoids and their impact on phenotype was studied. The droplets were found not to deform sufficiently to allow mechanical forces to be measured, yet the many of these droplets were retained within the organoids which led to an interesting phenotype within the organoids. The developing rosettes were found to develop enlarged lumens shown by an increase in area, this phenotype did not impact the differentiation into the cerebral lineage depicted by immunohistochemistry of hallmark marker of neuronal differentiation within organoids retaining droplets. The interfacial mechanics of fibrinogen nanosheets treated with varying concentrations of thrombin was studied using interfacial shear rheology. The effect of thrombin significantly altered the interfacial mechanics with the lower concentration of thrombin significantly increasing the toughness multiple folds and decreasing the elasticity of the nanosheets. Additionally, the nanostructure of nanosheets was studied using SEM and TEM and traditional fibrin fibres were found to not form at these interfaces, but local rearrangements and retractions in the thrombin treated nanosheets were observed. Finally, these enhanced mechanical properties promoted the proliferation and expansion of Mesenchymal stem cells on quasi-2D and 3D interfaces

    Fractal feature selection model for enhancing high-dimensional biological problems

    Get PDF
    The integration of biology, computer science, and statistics has given rise to the interdisciplinary field of bioinformatics, which aims to decode biological intricacies. It produces extensive and diverse features, presenting an enormous challenge in classifying bioinformatic problems. Therefore, an intelligent bioinformatics classification system must select the most relevant features to enhance machine learning performance. This paper proposes a feature selection model based on the fractal concept to improve the performance of intelligent systems in classifying high-dimensional biological problems. The proposed fractal feature selection (FFS) model divides features into blocks, measures the similarity between blocks using root mean square error (RMSE), and determines the importance of features based on low RMSE. The proposed FFS is tested and evaluated over ten high-dimensional bioinformatics datasets. The experiment results showed that the model significantly improved machine learning accuracy. The average accuracy rate was 79% with full features in machine learning algorithms, while FFS delivered promising results with an accuracy rate of 94%

    Joint multi-objective MEH selection and traffic path computation in 5G-MEC systems

    Get PDF
    Multi-access Edge Computing (MEC) is an emerging technology that allows to reduce the service latency and traffic congestion and to enable cloud offloading and context awareness. MEC consists in deploying computing devices, called MEC Hosts (MEHs), close to the user. Given the mobility of the user, several problems rise. The first problem is to select a MEH to run the service requested by the user. Another problem is to select the path to steer the traffic from the user to the selected MEH. The paper jointly addresses these two problems. First, the paper proposes a procedure to create a graph that is able to capture both network-layer and application-layer performance. Then, the proposed graph is used to apply the Multi-objective Dijkstra Algorithm (MDA), a technique used for multi-objective optimization problems, in order to find solutions to the addressed problems by simultaneously considering different performance metrics and constraints. To evaluate the performance of MDA, the paper implements a testbed based on AdvantEDGE and Kubernetes to migrate a VideoLAN application between two MEHs. A controller has been realized to integrate MDA with the 5G-MEC system in the testbed. The results show that MDA is able to perform the migration with a limited impact on the network performance and user experience. The lack of migration would instead lead to a severe reduction of the user experience.publishedVersio

    Converging organoids and extracellular matrix::New insights into liver cancer biology

    Get PDF

    Heuristic antenna selection and precoding for a massive MIMO system

    Get PDF
    Sixth Generation (6G) transceivers are envisioned to feature massively large antenna arrays compared to its predecessor. This will result in even higher spectral efficiency (SE) and multiplexing gains. However, immense concerns remain about the energy efficiency (EE) of such transceivers. This work focuses on partially connected hybrid architectures, with the primary aim of enhancing the EE of the system. To achieve this objective, the study proposes a combined approach of joint antenna selection and precoding, which holds the potential to further optimize the system’s EE while maintaining a satisfactory SE performance levels. The proposed approach incorporates antenna selection based on a meta-heuristic cyclic binary particle swarm optimization algorithm along with successive interference cancellation-based precoding. The results indicate that the proposed solution, in terms of SE and EE, performs very close to the optimal exhaustive search algorithm. This study also investigates the trade-off between SE and EE in a low and high signal-to-noise ratio (SNR) regimes. The robustness of the proposed scheme is also demonstrated when the channel state information is imperfect. In conclusion, this work presents a lower complexity approach to enhance EE in 6G transceivers while maintaining SE performance and along with a reduction in power consumption

    Converging organoids and extracellular matrix::New insights into liver cancer biology

    Get PDF
    Primary liver cancer, consisting primarily of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), is a heterogeneous malignancy with a dismal prognosis, resulting in the third leading cause of cancer mortality worldwide [1, 2]. It is characterized by unique histological features, late-stage diagnosis, a highly variable mutational landscape, and high levels of heterogeneity in biology and etiology [3-5]. Treatment options are limited, with surgical intervention the main curative option, although not available for the majority of patients which are diagnosed in an advanced stage. Major contributing factors to the complexity and limited treatment options are the interactions between primary tumor cells, non-neoplastic stromal and immune cells, and the extracellular matrix (ECM). ECM dysregulation plays a prominent role in multiple facets of liver cancer, including initiation and progression [6, 7]. HCC often develops in already damaged environments containing large areas of inflammation and fibrosis, while CCA is commonly characterized by significant desmoplasia, extensive formation of connective tissue surrounding the tumor [8, 9]. Thus, to gain a better understanding of liver cancer biology, sophisticated in vitro tumor models need to incorporate comprehensively the various aspects that together dictate liver cancer progression. Therefore, the aim of this thesis is to create in vitro liver cancer models through organoid technology approaches, allowing for novel insights into liver cancer biology and, in turn, providing potential avenues for therapeutic testing. To model primary epithelial liver cancer cells, organoid technology is employed in part I. To study and characterize the role of ECM in liver cancer, decellularization of tumor tissue, adjacent liver tissue, and distant metastatic organs (i.e. lung and lymph node) is described, characterized, and combined with organoid technology to create improved tissue engineered models for liver cancer in part II of this thesis. Chapter 1 provides a brief introduction into the concepts of liver cancer, cellular heterogeneity, decellularization and organoid technology. It also explains the rationale behind the work presented in this thesis. In-depth analysis of organoid technology and contrasting it to different in vitro cell culture systems employed for liver cancer modeling is done in chapter 2. Reliable establishment of liver cancer organoids is crucial for advancing translational applications of organoids, such as personalized medicine. Therefore, as described in chapter 3, a multi-center analysis was performed on establishment of liver cancer organoids. This revealed a global establishment efficiency rate of 28.2% (19.3% for hepatocellular carcinoma organoids (HCCO) and 36% for cholangiocarcinoma organoids (CCAO)). Additionally, potential solutions and future perspectives for increasing establishment are provided. Liver cancer organoids consist of solely primary epithelial tumor cells. To engineer an in vitro tumor model with the possibility of immunotherapy testing, CCAO were combined with immune cells in chapter 4. Co-culture of CCAO with peripheral blood mononuclear cells and/or allogenic T cells revealed an effective anti-tumor immune response, with distinct interpatient heterogeneity. These cytotoxic effects were mediated by cell-cell contact and release of soluble factors, albeit indirect killing through soluble factors was only observed in one organoid line. Thus, this model provided a first step towards developing immunotherapy for CCA on an individual patient level. Personalized medicine success is dependent on an organoids ability to recapitulate patient tissue faithfully. Therefore, in chapter 5 a novel organoid system was created in which branching morphogenesis was induced in cholangiocyte and CCA organoids. Branching cholangiocyte organoids self-organized into tubular structures, with high similarity to primary cholangiocytes, based on single-cell sequencing and functionality. Similarly, branching CCAO obtain a different morphology in vitro more similar to primary tumors. Moreover, these branching CCAO have a higher correlation to the transcriptomic profile of patient-paired tumor tissue and an increased drug resistance to gemcitabine and cisplatin, the standard chemotherapy regimen for CCA patients in the clinic. As discussed, CCAO represent the epithelial compartment of CCA. Proliferation, invasion, and metastasis of epithelial tumor cells is highly influenced by the interaction with their cellular and extracellular environment. The remodeling of various properties of the extracellular matrix (ECM), including stiffness, composition, alignment, and integrity, influences tumor progression. In chapter 6 the alterations of the ECM in solid tumors and the translational impact of our increased understanding of these alterations is discussed. The success of ECM-related cancer therapy development requires an intimate understanding of the malignancy-induced changes to the ECM. This principle was applied to liver cancer in chapter 7, whereby through a integrative molecular and mechanical approach the dysregulation of liver cancer ECM was characterized. An optimized agitation-based decellularization protocol was established for primary liver cancer (HCC and CCA) and paired adjacent tissue (HCC-ADJ and CCA-ADJ). Novel malignancy-related ECM protein signatures were found, which were previously overlooked in liver cancer transcriptomic data. Additionally, the mechanical characteristics were probed, which revealed divergent macro- and micro-scale mechanical properties and a higher alignment of collagen in CCA. This study provided a better understanding of ECM alterations during liver cancer as well as a potential scaffold for culture of organoids. This was applied to CCA in chapter 8 by combining decellularized CCA tumor ECM and tumor-free liver ECM with CCAO to study cell-matrix interactions. Culture of CCAO in tumor ECM resulted in a transcriptome closely resembling in vivo patient tumor tissue, and was accompanied by an increase in chemo resistance. In tumor-free liver ECM, devoid of desmoplasia, CCAO initiated a desmoplastic reaction through increased collagen production. If desmoplasia was already present, distinct ECM proteins were produced by the organoids. These were tumor-related proteins associated with poor patient survival. To extend this method of studying cell-matrix interactions to a metastatic setting, lung and lymph node tissue was decellularized and recellularized with CCAO in chapter 9, as these are common locations of metastasis in CCA. Decellularization resulted in removal of cells while preserving ECM structure and protein composition, linked to tissue-specific functioning hallmarks. Recellularization revealed that lung and lymph node ECM induced different gene expression profiles in the organoids, related to cancer stem cell phenotype, cell-ECM integrin binding, and epithelial-to-mesenchymal transition. Furthermore, the metabolic activity of CCAO in lung and lymph node was significantly influenced by the metastatic location, the original characteristics of the patient tumor, and the donor of the target organ. The previously described in vitro tumor models utilized decellularized scaffolds with native structure. Decellularized ECM can also be used for creation of tissue-specific hydrogels through digestion and gelation procedures. These hydrogels were created from both porcine and human livers in chapter 10. The liver ECM-based hydrogels were used to initiate and culture healthy cholangiocyte organoids, which maintained cholangiocyte marker expression, thus providing an alternative for initiation of organoids in BME. Building upon this, in chapter 11 human liver ECM-based extracts were used in combination with a one-step microfluidic encapsulation method to produce size standardized CCAO. The established system can facilitate the reduction of size variability conventionally seen in organoid culture by providing uniform scaffolding. Encapsulated CCAO retained their stem cell phenotype and were amendable to drug screening, showing the feasibility of scalable production of CCAO for throughput drug screening approaches. Lastly, Chapter 12 provides a global discussion and future outlook on tumor tissue engineering strategies for liver cancer, using organoid technology and decellularization. Combining multiple aspects of liver cancer, both cellular and extracellular, with tissue engineering strategies provides advanced tumor models that can delineate fundamental mechanistic insights as well as provide a platform for drug screening approaches.<br/

    Complementing Hi-C information for 3D chromatin reconstruction by ChromStruct

    Get PDF
    A multiscale method proposed elsewhere for reconstructing plausible 3D configurations of the chromatin in cell nuclei is recalled, based on the integration of contact data from Hi-C experiments and additional information coming from ChIP-seq, RNA-seq and ChIA-PET experiments. Provided that the additional data come from independent experiments, this kind of approach is supposed to leverage them to complement possibly noisy, biased or missing Hi-C records. When the different data sources are mutually concurrent, the resulting solutions are corroborated; otherwise, their validity would be weakened. Here, a problem of reliability arises, entailing an appropriate choice of the relative weights to be assigned to the different informational contributions. A series of experiments is presented that help to quantify the advantages and the limitations offered by this strategy. Whereas the advantages in accuracy are not always significant, the case of missing Hi-C data demonstrates the effectiveness of additional information in reconstructing the highly packed segments of the structure

    Improving the Direction of Arrival Estimation Using the Parasitic Subspace Generated by Active-Parasitic Antenna (APA) Arrays

    Get PDF
    The improvement in Direction of Arrival (DOA) estimation when the received signals impinge on Active-Parasitic Antenna (APA) arrays will be studied in this work. An APA array consists of several active antennas; others are parasitic antennas. The responses to the received signals are measured at the loaded terminals of the active element. The terminals of the parasitic element are shorted. The effect of the received signals on the parasites, i.e., the induced short-circuit current, is mutually coupled to the active elements. Eigen decomposition of the covariance matrix of the measurements of the APA array generates a third subspace in addition to the traditional signal and noise subspaces generated by the all-active antenna receiving array. This additional subspace, the parasitic subspace, is accompanied by very small eigenvalues (approaching zero). Hence, a complete orthogonality between this subspace and the column space of the steering matrix of the array can be obtained. As a result, better resolution in estimating the DOA can be achieved. Several simulations in conjunction with the MUSIC algorithm, which have been conducted in this work, depict that the APA array outperforms the all-active antenna array as a direction finder, regardless of the size of the array, the number of active elements, or the number of measurement snapshots. Furthermore, super-resolution DOA estimation can be achieved when a subset of the parasitic subspace is used as if the measurement were noiseless. Also, the APA array contributes to very small RMSE values over a wide range of S/N of the received signals.

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp
    • …
    corecore