358 research outputs found

    Homeostatic plasticity and external input shape neural network dynamics

    Full text link
    In vitro and in vivo spiking activity clearly differ. Whereas networks in vitro develop strong bursts separated by periods of very little spiking activity, in vivo cortical networks show continuous activity. This is puzzling considering that both networks presumably share similar single-neuron dynamics and plasticity rules. We propose that the defining difference between in vitro and in vivo dynamics is the strength of external input. In vitro, networks are virtually isolated, whereas in vivo every brain area receives continuous input. We analyze a model of spiking neurons in which the input strength, mediated by spike rate homeostasis, determines the characteristics of the dynamical state. In more detail, our analytical and numerical results on various network topologies show consistently that under increasing input, homeostatic plasticity generates distinct dynamic states, from bursting, to close-to-critical, reverberating and irregular states. This implies that the dynamic state of a neural network is not fixed but can readily adapt to the input strengths. Indeed, our results match experimental spike recordings in vitro and in vivo: the in vitro bursting behavior is consistent with a state generated by very low network input (< 0.1%), whereas in vivo activity suggests that on the order of 1% recorded spikes are input-driven, resulting in reverberating dynamics. Importantly, this predicts that one can abolish the ubiquitous bursts of in vitro preparations, and instead impose dynamics comparable to in vivo activity by exposing the system to weak long-term stimulation, thereby opening new paths to establish an in vivo-like assay in vitro for basic as well as neurological studies.Comment: 14 pages, 8 figures, accepted at Phys. Rev.

    Impact of network structure and cellular response on spike time correlations

    Get PDF
    Novel experimental techniques reveal the simultaneous activity of larger and larger numbers of neurons. As a result there is increasing interest in the structure of cooperative -- or correlated -- activity in neural populations, and in the possible impact of such correlations on the neural code. A fundamental theoretical challenge is to understand how the architecture of network connectivity along with the dynamical properties of single cells shape the magnitude and timescale of correlations. We provide a general approach to this problem by extending prior techniques based on linear response theory. We consider networks of general integrate-and-fire cells with arbitrary architecture, and provide explicit expressions for the approximate cross-correlation between constituent cells. These correlations depend strongly on the operating point (input mean and variance) of the neurons, even when connectivity is fixed. Moreover, the approximations admit an expansion in powers of the matrices that describe the network architecture. This expansion can be readily interpreted in terms of paths between different cells. We apply our results to large excitatory-inhibitory networks, and demonstrate first how precise balance --- or lack thereof --- between the strengths and timescales of excitatory and inhibitory synapses is reflected in the overall correlation structure of the network. We then derive explicit expressions for the average correlation structure in randomly connected networks. These expressions help to identify the important factors that shape coordinated neural activity in such networks

    Scaling of a large-scale simulation of synchronous slow-wave and asynchronous awake-like activity of a cortical model with long-range interconnections

    Full text link
    Cortical synapse organization supports a range of dynamic states on multiple spatial and temporal scales, from synchronous slow wave activity (SWA), characteristic of deep sleep or anesthesia, to fluctuating, asynchronous activity during wakefulness (AW). Such dynamic diversity poses a challenge for producing efficient large-scale simulations that embody realistic metaphors of short- and long-range synaptic connectivity. In fact, during SWA and AW different spatial extents of the cortical tissue are active in a given timespan and at different firing rates, which implies a wide variety of loads of local computation and communication. A balanced evaluation of simulation performance and robustness should therefore include tests of a variety of cortical dynamic states. Here, we demonstrate performance scaling of our proprietary Distributed and Plastic Spiking Neural Networks (DPSNN) simulation engine in both SWA and AW for bidimensional grids of neural populations, which reflects the modular organization of the cortex. We explored networks up to 192x192 modules, each composed of 1250 integrate-and-fire neurons with spike-frequency adaptation, and exponentially decaying inter-modular synaptic connectivity with varying spatial decay constant. For the largest networks the total number of synapses was over 70 billion. The execution platform included up to 64 dual-socket nodes, each socket mounting 8 Intel Xeon Haswell processor cores @ 2.40GHz clock rates. Network initialization time, memory usage, and execution time showed good scaling performances from 1 to 1024 processes, implemented using the standard Message Passing Interface (MPI) protocol. We achieved simulation speeds of between 2.3x10^9 and 4.1x10^9 synaptic events per second for both cortical states in the explored range of inter-modular interconnections.Comment: 22 pages, 9 figures, 4 table

    Training deep neural density estimators to identify mechanistic models of neural dynamics

    Get PDF
    Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators-- trained using model simulations-- to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features, and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin-Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics

    Motif Statistics and Spike Correlations in Neuronal Networks

    Get PDF
    Motifs are patterns of subgraphs of complex networks. We studied the impact of such patterns of connectivity on the level of correlated, or synchronized, spiking activity among pairs of cells in a recurrent network model of integrate and fire neurons. For a range of network architectures, we find that the pairwise correlation coefficients, averaged across the network, can be closely approximated using only three statistics of network connectivity. These are the overall network connection probability and the frequencies of two second-order motifs: diverging motifs, in which one cell provides input to two others, and chain motifs, in which two cells are connected via a third intermediary cell. Specifically, the prevalence of diverging and chain motifs tends to increase correlation. Our method is based on linear response theory, which enables us to express spiking statistics using linear algebra, and a resumming technique, which extrapolates from second order motifs to predict the overall effect of coupling on network correlation. Our motif-based results seek to isolate the effect of network architecture perturbatively from a known network state

    Scaling of a large-scale simulation of synchronous slow-wave and asynchronous awake-like activity of a cortical model with long-range interconnections

    Full text link
    Cortical synapse organization supports a range of dynamic states on multiple spatial and temporal scales, from synchronous slow wave activity (SWA), characteristic of deep sleep or anesthesia, to fluctuating, asynchronous activity during wakefulness (AW). Such dynamic diversity poses a challenge for producing efficient large-scale simulations that embody realistic metaphors of short- and long-range synaptic connectivity. In fact, during SWA and AW different spatial extents of the cortical tissue are active in a given timespan and at different firing rates, which implies a wide variety of loads of local computation and communication. A balanced evaluation of simulation performance and robustness should therefore include tests of a variety of cortical dynamic states. Here, we demonstrate performance scaling of our proprietary Distributed and Plastic Spiking Neural Networks (DPSNN) simulation engine in both SWA and AW for bidimensional grids of neural populations, which reflects the modular organization of the cortex. We explored networks up to 192x192 modules, each composed of 1250 integrate-and-fire neurons with spike-frequency adaptation, and exponentially decaying inter-modular synaptic connectivity with varying spatial decay constant. For the largest networks the total number of synapses was over 70 billion. The execution platform included up to 64 dual-socket nodes, each socket mounting 8 Intel Xeon Haswell processor cores @ 2.40GHz clock rates. Network initialization time, memory usage, and execution time showed good scaling performances from 1 to 1024 processes, implemented using the standard Message Passing Interface (MPI) protocol. We achieved simulation speeds of between 2.3x10^9 and 4.1x10^9 synaptic events per second for both cortical states in the explored range of inter-modular interconnections.Comment: 22 pages, 9 figures, 4 table

    Efficient Transmission of Subthreshold Signals in Complex Networks of Spiking Neurons

    Get PDF
    We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances—that naturally balances the network with excitatory and inhibitory synapses—and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.The authors acknowledge support from the Spanish Ministry of economy and competitiveness under the project FIS2013-43201-P

    Robust short-term memory without synaptic learning

    Get PDF
    Short-term memory in the brain cannot in general be explained the way long-term memory can -- as a gradual modification of synaptic weights -- since it takes place too quickly. Theories based on some form of cellular bistability, however, do not seem able to account for the fact that noisy neurons can collectively store information in a robust manner. We show how a sufficiently clustered network of simple model neurons can be instantly induced into metastable states capable of retaining information for a short time (a few seconds). The mechanism is robust to different network topologies and kinds of neural model. This could constitute a viable means available to the brain for sensory and/or short-term memory with no need of synaptic learning. Relevant phenomena described by neurobiology and psychology, such as local synchronization of synaptic inputs and power-law statistics of forgetting avalanches, emerge naturally from this mechanism, and we suggest possible experiments to test its viability in more biological settings.Comment: 20 pages, 9 figures. Amended to include section on spiking neurons, with general rewrit
    corecore