253 research outputs found

    A short survey on next generation 5G wireless networks

    Get PDF
    Current 4G - the fourth-generation wireless communication, which exists in most countries, represents an advance of the previous 3 generation wireless communication. However, there are some challenges and limitations, associated with an explosion of wireless devices, which cannot be accommodated by 4G. Increasing the proliferation of smart devices, the development of new multimedia applications, and the growing demand for high data rates are among the main problems of the existing 4G system. As a solution, the wireless system designers have started research on the fifth-generation wireless systems. 5G will be the paradigm shift that could provide with ultra-high data rate, low latency, an increase of the base station capacity, and the improved quality of services. This paper is a review of the changes through the evolution of existing cellular networks toward 5G.  It represented a comprehensive study associated with 5G, requirements for 5G, its advantages, and challenges. We will explain the architecture changes – radio access network (RAN), air interfaces, smart antennas, cloud RAN, and HetNet. Furthermore, it discussed physical layer technologies, which include new channel modes estimation, new antenna design, and MIMO technologies. Also, it discussed MAC layer protocols. The article included three kinds of technologies: heterogeneous networks, massive multiple-input and output, and millimeter-wave. Finally, it explained the applications, supported by 5G, new features, various possibilities, and predictions

    State-of-the-art assessment of 5G mmWave communications

    Get PDF
    Deliverable D2.1 del proyecto 5GWirelessMain objective of the European 5Gwireless project, which is part of the H2020 Marie Slodowska- Curie ITN (Innovative Training Networks) program resides in the training and involvement of young researchers in the elaboration of future mobile communication networks, focusing on innovative wireless technologies, heterogeneous network architectures, new topologies (including ultra-dense deployments), and appropriate tools. The present Document D2.1 is the first deliverable of Work- Package 2 (WP2) that is specifically devoted to the modeling of the millimeter-wave (mmWave) propagation channels, and development of appropriate mmWave beamforming and signal processing techniques. Deliver D2.1 gives a state-of-the-art on the mmWave channel measurement, characterization and modeling; existing antenna array technologies, channel estimation and precoding algorithms; proposed deployment and networking techniques; some performance studies; as well as a review on the evaluation and analysis toolsPostprint (published version

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    Radio beam steering in indoor fibre-wireless networks

    Get PDF
    • …
    corecore