43,922 research outputs found

    On the decomposition of stochastic cellular automata

    Full text link
    In this paper we present two interesting properties of stochastic cellular automata that can be helpful in analyzing the dynamical behavior of such automata. The first property allows for calculating cell-wise probability distributions over the state set of a stochastic cellular automaton, i.e. images that show the average state of each cell during the evolution of the stochastic cellular automaton. The second property shows that stochastic cellular automata are equivalent to so-called stochastic mixtures of deterministic cellular automata. Based on this property, any stochastic cellular automaton can be decomposed into a set of deterministic cellular automata, each of which contributes to the behavior of the stochastic cellular automaton.Comment: Submitted to Journal of Computation Science, Special Issue on Cellular Automata Application

    Descriptional complexity of cellular automata and decidability questions

    Get PDF
    We study the descriptional complexity of cellular automata (CA), a parallel model of computation. We show that between one of the simplest cellular models, the realtime-OCA. and "classical" models like deterministic finite automata (DFA) or pushdown automata (PDA), there will be savings concerning the size of description not bounded by any recursive function, a so-called nonrecursive trade-off. Furthermore, nonrecursive trade-offs are shown between some restricted classes of cellular automata. The set of valid computations of a Turing machine can be recognized by a realtime-OCA. This implies that many decidability questions are not even semi decidable for cellular automata. There is no pumping lemma and no minimization algorithm for cellular automata

    Phase Space Invertible Asynchronous Cellular Automata

    Full text link
    While for synchronous deterministic cellular automata there is an accepted definition of reversibility, the situation is less clear for asynchronous cellular automata. We first discuss a few possibilities and then investigate what we call phase space invertible asynchronous cellular automata in more detail. We will show that for each Turing machine there is such a cellular automaton simulating it, and that it is decidable whether an asynchronous cellular automaton has this property or not, even in higher dimensions.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    A compact topology for sand automata

    Get PDF
    In this paper, we exhibit a strong relation between the sand automata configuration space and the cellular automata configuration space. This relation induces a compact topology for sand automata, and a new context in which sand automata are homeomorphic to cellular automata acting on a specific subshift. We show that the existing topological results for sand automata, including the Hedlund-like representation theorem, still hold. In this context, we give a characterization of the cellular automata which are sand automata, and study some dynamical behaviors such as equicontinuity. Furthermore, we deal with the nilpotency. We show that the classical definition is not meaningful for sand automata. Then, we introduce a suitable new notion of nilpotency for sand automata. Finally, we prove that this simple dynamical behavior is undecidable

    Randomized Cellular Automata

    Full text link
    We define and study a few properties of a class of random automata networks. While regular finite one-dimensional cellular automata are defined on periodic lattices, these automata networks, called randomized cellular automata, are defined on random directed graphs with constant out-degrees and evolve according to cellular automaton rules. For some families of rules, a few typical a priori unexpected results are presented.Comment: 13 pages, 7 figure
    • …
    corecore