92 research outputs found

    An Evaluation of Cellular Neural Networks for the Automatic Identification of Cephalometric Landmarks on Digital Images

    Get PDF
    Several efforts have been made to completely automate cephalometric analysis by automatic landmark search. However, accuracy obtained was worse than manual identification in every study. The analogue-to-digital conversion of X-ray has been claimed to be the main problem. Therefore the aim of this investigation was to evaluate the accuracy of the Cellular Neural Networks approach for automatic location of cephalometric landmarks on softcopy of direct digital cephalometric X-rays. Forty-one, direct-digital lateral cephalometric radiographs were obtained by a Siemens Orthophos DS Ceph and were used in this study and 10 landmarks (N, A Point, Ba, Po, Pt, B Point, Pg, PM, UIE, LIE) were the object of automatic landmark identification. The mean errors and standard deviations from the best estimate of cephalometric points were calculated for each landmark. Differences in the mean errors of automatic and manual landmarking were compared with a 1-way analysis of variance. The analyses indicated that the differences were very small, and they were found at most within 0.59 mm. Furthermore, only few of these differences were statistically significant, but differences were so small to be in most instances clinically meaningless. Therefore the use of X-ray files with respect to scanned X-ray improved landmark accuracy of automatic detection. Investigations on softcopy of digital cephalometric X-rays, to search more landmarks in order to enable a complete automatic cephalometric analysis, are strongly encouraged

    Machine Learning for Biomedical Application

    Get PDF
    Biomedicine is a multidisciplinary branch of medical science that consists of many scientific disciplines, e.g., biology, biotechnology, bioinformatics, and genetics; moreover, it covers various medical specialties. In recent years, this field of science has developed rapidly. This means that a large amount of data has been generated, due to (among other reasons) the processing, analysis, and recognition of a wide range of biomedical signals and images obtained through increasingly advanced medical imaging devices. The analysis of these data requires the use of advanced IT methods, which include those related to the use of artificial intelligence, and in particular machine learning. It is a summary of the Special Issue “Machine Learning for Biomedical Application”, briefly outlining selected applications of machine learning in the processing, analysis, and recognition of biomedical data, mostly regarding biosignals and medical images

    Application Of Morphometric Analysis And Tissue Engineering To Bioengineering Personalised Autologous Bone Tissues For The Reconstruction Of Congenital Midface Deformities

    Get PDF
    Congenital craniofacial bone deformities frequently occur in conditions such as Craniofacial microsomia (CM) and Treacher Collins Syndrome (TCS). Affected children may suffer from functional impairment and poor self-esteem. Reconstruction aims to restore form and function but often involves multiple invasive surgeries throughout childhood. The reliance on foreign-body implants and autologous tissue-transfer is also associated with morbidity. The aim of this work was to assess whether morphometric analysis and tissue engineering using paediatric adipose derived stem cells could facilitate bioengineering personalised autologous facial bone implants to provide a more accurate and life-long solution for the treatment of midface deformities. Paediatric facial CT scans (n=70) from control, CM and TCS subjects were used to build a dense surface model of the midface to study normal and dysmorphic postnatal midface development. This enabled relating of soft and skeletal tissue growth, analysis of asymmetry and evaluation of surgical correction. This work also establishes the foundations for developing a surgical planning tool. Paediatric craniofacial bone was also analysed in order to establish a reference for tissue engineering and reverse engineer the bone microenvironment to fabricate biomaterials and culture conditions that enhance osteogenic maturation. It was possible to bioengineer bone tissue using hADSC cultured on a bone biomimetic hybrid POSS-PCL-Fibrin scaffold. Cellularised scaffolds survived subcutaneous implantation in nude mice for 4 months, underwent vascularisation and showed evidence of mature extracellular matrix formation and cellular composition similar to native bone The results of this work support a multi-faceted approach to bone tissue engineering. Increased understanding of paediatric facial bones permits recreation of the bone microenvironment to enable osteogenic maturation of hADSC. These tissues could eventually be custom-shaped using an operative planning tool based on these computer models. Future work using larger data sets, bioreactors, 3D printing and large animal defect models will seek to build on these promising results

    The Role of Transient Vibration of the Skull on Concussion

    Get PDF
    Concussion is a traumatic brain injury usually caused by a direct or indirect blow to the head that affects brain function. The maximum mechanical impedance of the brain tissue occurs at 450±50 Hz and may be affected by the skull resonant frequencies. After an impact to the head, vibration resonance of the skull damages the underlying cortex. The skull deforms and vibrates, like a bell for 3 to 5 milliseconds, bruising the cortex. Furthermore, the deceleration forces the frontal and temporal cortex against the skull, eliminating a layer of cerebrospinal fluid. When the skull vibrates, the force spreads directly to the cortex, with no layer of cerebrospinal fluid to reflect the wave or cushion its force. To date, there is few researches investigating the effect of transient vibration of the skull. Therefore, the overall goal of the proposed research is to gain better understanding of the role of transient vibration of the skull on concussion. This goal will be achieved by addressing three research objectives. First, a MRI skull and brain segmentation automatic technique is developed. Due to bones’ weak magnetic resonance signal, MRI scans struggle with differentiating bone tissue from other structures. One of the most important components for a successful segmentation is high-quality ground truth labels. Therefore, we introduce a deep learning framework for skull segmentation purpose where the ground truth labels are created from CT imaging using the standard tessellation language (STL). Furthermore, the brain region will be important for a future work, thus, we explore a new initialization concept of the convolutional neural network (CNN) by orthogonal moments to improve brain segmentation in MRI. Second, the creation of a novel 2D and 3D Automatic Method to Align the Facial Skeleton is introduced. An important aspect for further impact analysis is the ability to precisely simulate the same point of impact on multiple bone models. To perform this task, the skull must be precisely aligned in all anatomical planes. Therefore, we introduce a 2D/3D technique to align the facial skeleton that was initially developed for automatically calculating the craniofacial symmetry midline. In the 2D version, the entire concept of using cephalometric landmarks and manual image grid alignment to construct the training dataset was introduced. Then, this concept was extended to a 3D version where coronal and transverse planes are aligned using CNN approach. As the alignment in the sagittal plane is still undefined, a new alignment based on these techniques will be created to align the sagittal plane using Frankfort plane as a framework. Finally, the resonant frequencies of multiple skulls are assessed to determine how the skull resonant frequency vibrations propagate into the brain tissue. After applying material properties and mesh to the skull, modal analysis is performed to assess the skull natural frequencies. Finally, theories will be raised regarding the relation between the skull geometry, such as shape and thickness, and vibration with brain tissue injury, which may result in concussive injury

    Artificial Intelligence in Oral Health

    Get PDF
    This Special Issue is intended to lay the foundation of AI applications focusing on oral health, including general dentistry, periodontology, implantology, oral surgery, oral radiology, orthodontics, and prosthodontics, among others

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Optimisation of image processing networks for neuronal membrane detection

    Get PDF
    This research dealt with the problem of neuronal membrane detection, in which the core challenge is distinguishing membranes from organelles. A simple and efficient optimisation framework is proposed based on several basic processing steps, including local contrast enhancement, denoising, thresholding, hole-filling, watershed segmentation, and morphological operations. The two main algorithms proposed Image Processing Chain Optimisation (IPCO) and Multiple IPCO (MIPCO)combine elements of Genetic Algorithms, Differential Evolution, and Rank-based uniform crossover. 91.67% is the highest recorded individual IPCO score with a speed of 280 s, and 92.11% is the highest recorded ensembles IPCO score whereas 91.80% is the highest recorded individual MIPCO score with a speed of 540 s for typically less than 500 optimisation generations and 92.63% is the highest recorded ensembles MIPCO score.Further, IPCO chains and MIPCO networks do not require specialised hardware and they are easy to use and deploy. This is the first application of this approach in the context of the Drosophila first instar larva ventral nerve cord. Both algorithms use existing image processing functions, but optimise the way in which they are configured and combined. The approach differs from related work in terms of the set of functions used, the parameterisations allowed, the optimisation methods adopted, the combination framework, and the testing and analyses conducted. Both IPCO and MIPCO are efficient and interpretable, and facilitate the generation of new insights. Systematic analyses of the statistics of optimised chains were conducted using 30 microscopy slices with corresponding ground truth. This process revealed several interesting and unconventional insights pertaining to preprocessing, classification, post-processing, and speed, and the appearance of functions in unorthodox positions in image processing chains, suggesting new sets of pipelines for image processing. One such insight revealed that, at least in the context of our membrane detection data, it is typically better to enhance, and even classify, data before denoising them

    Optimisation of image processing networks for neuronal membrane detection

    Get PDF
    This research dealt with the problem of neuronal membrane detection, in which the core challenge is distinguishing membranes from organelles. A simple and efficient optimisation framework is proposed based on several basic processing steps, including local contrast enhancement, denoising, thresholding, hole-filling, watershed segmentation, and morphological operations. The two main algorithms proposed Image Processing Chain Optimisation (IPCO) and Multiple IPCO (MIPCO)combine elements of Genetic Algorithms, Differential Evolution, and Rank-based uniform crossover. 91.67% is the highest recorded individual IPCO score with a speed of 280 s, and 92.11% is the highest recorded ensembles IPCO score whereas 91.80% is the highest recorded individual MIPCO score with a speed of 540 s for typically less than 500 optimisation generations and 92.63% is the highest recorded ensembles MIPCO score.Further, IPCO chains and MIPCO networks do not require specialised hardware and they are easy to use and deploy. This is the first application of this approach in the context of the Drosophila first instar larva ventral nerve cord. Both algorithms use existing image processing functions, but optimise the way in which they are configured and combined. The approach differs from related work in terms of the set of functions used, the parameterisations allowed, the optimisation methods adopted, the combination framework, and the testing and analyses conducted. Both IPCO and MIPCO are efficient and interpretable, and facilitate the generation of new insights. Systematic analyses of the statistics of optimised chains were conducted using 30 microscopy slices with corresponding ground truth. This process revealed several interesting and unconventional insights pertaining to preprocessing, classification, post-processing, and speed, and the appearance of functions in unorthodox positions in image processing chains, suggesting new sets of pipelines for image processing. One such insight revealed that, at least in the context of our membrane detection data, it is typically better to enhance, and even classify, data before denoising them
    corecore