36,954 research outputs found

    A survey on Human Mobility and its applications

    Full text link
    Human Mobility has attracted attentions from different fields of studies such as epidemic modeling, traffic engineering, traffic prediction and urban planning. In this survey we review major characteristics of human mobility studies including from trajectory-based studies to studies using graph and network theory. In trajectory-based studies statistical measures such as jump length distribution and radius of gyration are analyzed in order to investigate how people move in their daily life, and if it is possible to model this individual movements and make prediction based on them. Using graph in mobility studies, helps to investigate the dynamic behavior of the system, such as diffusion and flow in the network and makes it easier to estimate how much one part of the network influences another by using metrics like centrality measures. We aim to study population flow in transportation networks using mobility data to derive models and patterns, and to develop new applications in predicting phenomena such as congestion. Human Mobility studies with the new generation of mobility data provided by cellular phone networks, arise new challenges such as data storing, data representation, data analysis and computation complexity. A comparative review of different data types used in current tools and applications of Human Mobility studies leads us to new approaches for dealing with mentioned challenges

    Network-based IP flow mobility support in 3GPPs evolved packet core

    Get PDF
    Includes bibliographical references.Mobile data traffic in cellular networks has increased tremendously in the last few years. Due to the costs associated with licensed spectrum, Mobile Network Operators (MNOs) are battling to manage these increased traffic growths. Offloading mobile data traffic to alternative low cost access networks like Wi-Fi has been proposed as a candidate solution to enable MNOs to alleviate congestion from the cellular networks. This dissertation investigates an offloading technique called IP flow mobility within the 3rd Generation Partnership Project (3GPP) all-IP mobile core network, the Evolved Packet Core (EPC). IP flow mobility would enable offloading a subset of the mobile user‟s traffic to an alternative access network while allowing the rest of the end-user‟s traffic to be kept in the cellular access; this way, traffic with stringent quality of service requirements like Voice over Internet Protocol (VoIP) would not experience service disruption or interruption when offloaded. This technique is different from previous offloading techniques where all the end-user‟s traffic is offloaded. IP flow mobility functionality can be realised with either host- or network-based mobility protocols. The recommended IP flow mobility standard of 3GPP is based on the host-based mobility solution, Dual-Stack Mobile IPv6. However, host-based mobility solutions have drawbacks like long handover latencies and produce signaling overhead in the radio access networks, which could be less appealing to MNOs. Network-based mobility solutions, compared to the host-based mobility solutions, have reduced handover latencies with no signaling overhead occurring in the radio access network. Proxy Mobile IPv6 is a networkbased mobility protocol adapted by 3GPP for mobility in the EPC. However, the standardisation of the Proxy Mobile IPv6-based IP flow mobility functionality is still ongoing within 3GPP. A review of related literature and standardisation efforts reveals shortcomings with the Proxy Mobile IPv6 mobility protocol in supporting IP flow mobility. Proxy Mobile IPv6 does not have a mechanism that would ensure session continuity during IP flow handoffs or a mechanism enabling controlling of the forwarding path of a particular IP flow i.e., specifying the access network for the IP flow. The latter mechanism is referred to as IP flow information management and flow-based routing. These mechanisms represent the basis for enabling the IP flow mobility functionality. To address the shortcomings of Proxy Mobile IPv6, this dissertation proposes vi enhancements to the protocol procedures to enable the two mechanisms for IP flow mobility functionality. The proposed enhancements for the session continuity mechanism draw on work in related literature and the proposed enhancements for the IP flow information management and flow-based routing mechanism are based on the concepts used in the Dual- Stack Mobile IPv6 IP flow mobility functionality. Together the two mechanisms allow the end-user to issue requests on what access network a particular IP flow should be routed, and ensure that the IP flows are moved to the particular access network without session discontinuity

    Transparent network-assisted flow mobility for multimedia applications in IMS environments

    Get PDF
    Cellular network operators are striving to solve the problem caused by the increasing volume of traffic over their networks. Given the proliferation of multi-interface devices, offloading part of the traffic to available access networks (e. g., WiFi or 3G access networks, even from other operators) seems to be a promising alternative. Here, we propose an IMS-compatible solution for flow mobility between access networks that exhibits two key features: flow mobility is transparent to both local applications at mobile nodes and their communication peers (e. g., multimedia content servers), and mobility operations are assisted by the network, so the home network supports the terminal in the process of access network discovery, and provides the terminal with policies that meet visited and home operators' roaming agreements while optimizing the use of their networks. The proposed solution has been validated using a real IMS testbed with Ethernet and WiFi access networks, where the mobility of UDP and TCP flows has been tested.The work in this article has been partially granted by the Madrid Community through the MEDIANET project (S-2009/TIC-1468) and by the Celtic UP-TO-US project (TSI-020400-2010-114)Publicad

    IP Flow Mobility in PMIPv6 Based Networks: Solution Design and Experimental Evaluation

    Get PDF
    The ability of offloading selected IP data traffic from 3G to WLAN access networks is considered a key feature in the upcoming 3GPP specifications, being the main goal to alleviate data congestion in cellular networks while delivering a positive user experience. Lately, the 3GPP has adopted solutions that enable mobility of IP-based wireless devices relocating mobility functions from the terminal to the network. To this end, the IETF has standardized Proxy Mobile IPv6 (PMIPv6), a protocol capable to hide often complex mobility procedures from the mobile devices. This paper, in line with the mentioned offload requirement, further extends PMIPv6 to support dynamic IP flow mobility management across access wireless networks according to operator policies. Considering energy consumption as a critical aspect for hand-held devices and smart-phones, we assess the feasibility of the proposed solution and provide an experimental analysis showing the cost (in terms of energy consumption) of simultaneous packet transmission/reception using multiple network interfaces. The end-to-end system design has been implemented and validated by means of an experimental network setup.European Community´s Seventh Framework ProgramPublicad

    A software-defined architecture for next-generation cellular networks

    Get PDF
    In the recent years, mobile cellular networks are undergoing fundamental changes and many established concepts are being revisited. New emerging paradigms, such as Software-Defined Networking (SDN), Mobile Cloud Computing (MCC), Network Function Virtualization (NFV), Internet of Things (IoT),and Mobile Social Networking (MSN), bring challenges in the design of cellular networks architectures. Current Long-Term Evolution (LTE) networks are not able to accommodate these new trends in a scalable and efficient way. In this paper, first we discuss the limitations of the current LTE architecture. Second, driven by the new communication needs and by the advances in aforementioned areas, we propose a new architecture for next generation cellular networks. Some of its characteristics include support for distributed content routing, Heterogeneous Networks(HetNets) and multiple Radio Access Technologies (RATs). Finally, we present simulation results which show that significant backhaul traffic savings can be achieved by implementing caching and routing functions at the network edge

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure
    corecore