234 research outputs found

    Graphic cryptography with pseudorandom bit generators and cellular automata

    Get PDF
    In this paper we propose a new graphic symmetrical cryptosystem in order to encrypt a colored image defined by pixels and by any number of colors. This cryptosystem is based on a reversible bidimensional cellular automaton and uses a pseudorandom bit generator. As the key of the cryptosystem is the seed of the pseudorandom bit generator, the latter has to be cryptographically secure. Moreover, the recovered image from the ciphered image has not loss of resolution and the ratio between the ciphered image and the original one, i.e., the factor expansion of the cryptosystem, is 11.Peer reviewe

    Modelling Nonlinear Sequence Generators in terms of Linear Cellular Automata

    Full text link
    In this work, a wide family of LFSR-based sequence generators, the so-called Clock-Controlled Shrinking Generators (CCSGs), has been analyzed and identified with a subset of linear Cellular Automata (CA). In fact, a pair of linear models describing the behavior of the CCSGs can be derived. The algorithm that converts a given CCSG into a CA-based linear model is very simple and can be applied to CCSGs in a range of practical interest. The linearity of these cellular models can be advantageously used in two different ways: (a) for the analysis and/or cryptanalysis of the CCSGs and (b) for the reconstruction of the output sequence obtained from this kind of generators.Comment: 15 pages, 0 figure

    Cellular automaton supercomputing

    Get PDF
    Many of the models now used in science and engineering are over a century old. And most of them can be implemented on modern digital computers only with considerable difficulty. Some new basic models are discussed which are much more directly suitable for digital computer simulation. The fundamental principle is that the models considered herein are as suitable as possible for implementation on digital computers. It is then a matter of scientific analysis to determine whether such models can reproduce the behavior seen in physical and other systems. Such analysis was carried out in several cases, and the results are very encouraging

    A novel cryptosystem based on Gluškov product of automata

    Get PDF
    The concept of Gluškov product was introduced by V. M. Gluškov in 1961. It was intensively studied by several scientists (first of all, by Ferenc Gécseg and the automata-theory school centred around him in Szeged, Hungary) since the middle of 60’s. In spite of the large number of excellent publications, no application of Gluškov-type products of automata in cryptography has arisen so far. This paper is the first attempt in this direction
    corecore