11,929 research outputs found

    Interaction Automata and the ia2d Interpreter

    Get PDF
    We introduce interaction automata as a topological model of computation and present the conceptual plane interpreter ia2d. Interaction automata form a refinement of both interaction nets and cellular automata models that combine data deployment, memory management and structured computation mechanisms. Their local structure is inspired from pointer machines and allows an asynchronous spatial distribution of the computation. Our tool can be considered as a proof-of-concept piece of abstract hardware on which functional programs can be run in parallel

    Feasible models of computation: three- dimensionality and energy consumption

    Get PDF
    Using cellular automata as models of parallel machines we investigate the relation between (r-1)- and r-dimensional machines and constraints for the energy consumption of r-dimensional machines which are motivated by fundamental physical limitations for the case r=3. Depending on the operations which must be considered to dissipate energy (state changes, communication over unit-length wires, ...), some relations between the relative performance of 2-dimensional and 3-dimensional machines are derived. In the light of these results it seems imperative that for feasible models of computation energy consumption has to be considered as an additional complexity measure

    Developing Efficient Discrete Simulations on Multicore and GPU Architectures

    Get PDF
    In this paper we show how to efficiently implement parallel discrete simulations on multicoreandGPUarchitecturesthrougharealexampleofanapplication: acellularautomatamodel of laser dynamics. We describe the techniques employed to build and optimize the implementations using OpenMP and CUDA frameworks. We have evaluated the performance on two different hardware platforms that represent different target market segments: high-end platforms for scientific computing, using an Intel Xeon Platinum 8259CL server with 48 cores, and also an NVIDIA Tesla V100GPU,bothrunningonAmazonWebServer(AWS)Cloud;and on a consumer-oriented platform, using an Intel Core i9 9900k CPU and an NVIDIA GeForce GTX 1050 TI GPU. Performance results were compared and analyzed in detail. We show that excellent performance and scalability can be obtained in both platforms, and we extract some important issues that imply a performance degradation for them. We also found that current multicore CPUs with large core numbers can bring a performance very near to that of GPUs, and even identical in some cases.Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO), and the Agencia Estatal de Investigación (AEI) of Spain, cofinanced by FEDER funds (EU) TIN2017-89842

    A Quantum Game of Life

    Get PDF
    This research describes a three dimensional quantum cellular automaton (QCA) which can simulate all other 3D QCA. This intrinsically universal QCA belongs to the simplest subclass of QCA: Partitioned QCA (PQCA). PQCA are QCA of a particular form, where incoming information is scattered by a fixed unitary U before being redistributed and rescattered. Our construction is minimal amongst PQCA, having block size 2 x 2 x 2 and cell dimension 2. Signals, wires and gates emerge in an elegant fashion.Comment: 13 pages, 10 figures. Final version, accepted by Journ\'ees Automates Cellulaires (JAC 2010)

    From quantum cellular automata to quantum lattice gases

    Get PDF
    A natural architecture for nanoscale quantum computation is that of a quantum cellular automaton. Motivated by this observation, in this paper we begin an investigation of exactly unitary cellular automata. After proving that there can be no nontrivial, homogeneous, local, unitary, scalar cellular automaton in one dimension, we weaken the homogeneity condition and show that there are nontrivial, exactly unitary, partitioning cellular automata. We find a one parameter family of evolution rules which are best interpreted as those for a one particle quantum automaton. This model is naturally reformulated as a two component cellular automaton which we demonstrate to limit to the Dirac equation. We describe two generalizations of this automaton, the second of which, to multiple interacting particles, is the correct definition of a quantum lattice gas.Comment: 22 pages, plain TeX, 9 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages); minor typographical corrections and journal reference adde
    corecore