995 research outputs found

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    Validated force-based modeling of pedestrian dynamics

    Get PDF
    This dissertation investigates force-based modeling of pedestrian dynamics. Having the quantitative validation of mathematical models in focus principle questions will be addressed throughout this work: Is it manageable to describe pedestrian dynamics solely with the equations of motion derived from the Newtonian dynamics? On the road to giving answers to this question we investigate the consequences and side-effects of completing a force-based model with additional rules and imposing restrictions on the state variables. Another important issue is the representation of modeled pedestrians. Does the geometrical shape of a two dimensional projection of the human body matter when modeling pedestrian movement? If yes which form is most suitable? This point is investigated in the second part while introducing a new force-based model. Moreover, we highlight a frequently underestimated aspect in force-based modeling which is to what extent the steering of pedestrians influences their dynamics? In the third part we introduce four possible strategies to define the desired direction of each pedestrian when moving in a facility. Finally, the effects of the aforementioned approaches are discussed by means of numerical tests in different geometries with one set of model parameters. Furthermore, the validation of the developed model is questioned by comparing simulation results with empirical data
    • …
    corecore