992 research outputs found

    Identification of excitable media using a scalar coupled map lattice model

    Get PDF
    The identification problem for excitable media is investigated in this paper. A new scalar coupled map lattice (SCML) model is introduced and the orthogonal least squares algorithm is employed to determinate the structure of the SCML model and to estimate the associated parameters. A simulated pattern and a pattern observed directly from a real Belousov-Zhabotinsky reaction are identified. The identified SCML models are shown to possess almost the same local dynamics as the original systems and are able to provide good long term predictions

    Boolean Delay Equations: A simple way of looking at complex systems

    Full text link
    Boolean Delay Equations (BDEs) are semi-discrete dynamical models with Boolean-valued variables that evolve in continuous time. Systems of BDEs can be classified into conservative or dissipative, in a manner that parallels the classification of ordinary or partial differential equations. Solutions to certain conservative BDEs exhibit growth of complexity in time. They represent therewith metaphors for biological evolution or human history. Dissipative BDEs are structurally stable and exhibit multiple equilibria and limit cycles, as well as more complex, fractal solution sets, such as Devil's staircases and ``fractal sunbursts``. All known solutions of dissipative BDEs have stationary variance. BDE systems of this type, both free and forced, have been used as highly idealized models of climate change on interannual, interdecadal and paleoclimatic time scales. BDEs are also being used as flexible, highly efficient models of colliding cascades in earthquake modeling and prediction, as well as in genetics. In this paper we review the theory of systems of BDEs and illustrate their applications to climatic and solid earth problems. The former have used small systems of BDEs, while the latter have used large networks of BDEs. We moreover introduce BDEs with an infinite number of variables distributed in space (``partial BDEs``) and discuss connections with other types of dynamical systems, including cellular automata and Boolean networks. This research-and-review paper concludes with a set of open questions.Comment: Latex, 67 pages with 15 eps figures. Revised version, in particular the discussion on partial BDEs is updated and enlarge

    Learning spatio-temporal patterns with Neural Cellular Automata

    Full text link
    Neural Cellular Automata (NCA) are a powerful combination of machine learning and mechanistic modelling. We train NCA to learn complex dynamics from time series of images and PDE trajectories. Our method is designed to identify underlying local rules that govern large scale dynamic emergent behaviours. Previous work on NCA focuses on learning rules that give stationary emergent structures. We extend NCA to capture both transient and stable structures within the same system, as well as learning rules that capture the dynamics of Turing pattern formation in nonlinear Partial Differential Equations (PDEs). We demonstrate that NCA can generalise very well beyond their PDE training data, we show how to constrain NCA to respect given symmetries, and we explore the effects of associated hyperparameters on model performance and stability. Being able to learn arbitrary dynamics gives NCA great potential as a data driven modelling framework, especially for modelling biological pattern formation.Comment: For videos referenced in appendix, see: https://github.com/AlexDR1998/NCA/tree/main/Video

    Model of the Belousov-Zhabotinsky reaction

    Full text link
    The article describes results of the modified model of the Belousov-Zhabotinsky reaction, which resembles rather well the limit set observed upon experimental performance of the reaction in the Petri dish. We discuss the concept of the ignition of circular waves and show that only the asymmetrical ignition leads to the formation of spiral structures. From the qualitative assumptions on the behavior of dynamic systems, we conclude that the Belousov-Zhabotinsky reaction likely forms a regular grid.Comment: 17 pages, 12 figure
    • …
    corecore