50 research outputs found

    Autonomous Task-Based Evolutionary Design of Modular Robots

    Get PDF
    In an attempt to solve the problem of finding a set of multiple unique modular robotic designs that can be constructed using a given repertoire of modules to perform a specific task, a novel synthesis framework is introduced based on design optimization concepts and evolutionary algorithms to search for the optimal design. Designing modular robotic systems faces two main challenges: the lack of basic rules of thumb and design bias introduced by human designers. The space of possible designs cannot be easily grasped by human designers especially for new tasks or tasks that are not fully understood by designers. Therefore, evolutionary computation is employed to design modular robots autonomously. Evolutionary algorithms can efficiently handle problems with discrete search spaces and solutions of variable sizes as these algorithms offer feasible robustness to local minima in the search space; and they can be parallelized easily to reducing system runtime. Moreover, they do not have to make assumptions about the solution form. This dissertation proposes a novel autonomous system for task-based modular robotic design based on evolutionary algorithms to search for the optimal design. The introduced system offers a flexible synthesis algorithm that can accommodate to different task-based design needs and can be applied to different modular shapes to produce homogenous modular robots. The proposed system uses a new representation for modular robotic assembly configuration based on graph theory and Assembly Incidence Matrix (AIM), in order to enable efficient and extendible task-based design of modular robots that can take input modules of different geometries and Degrees Of Freedom (DOFs). Robotic simulation is a powerful tool for saving time and money when designing robots as it provides an accurate method of assessing robotic adequacy to accomplish a specific task. Furthermore, it is difficult to predict robotic performance without simulation. Thus, simulation is used in this research to evaluate the robotic designs by measuring the fitness of the evolved robots, while incorporating the environmental features and robotic hardware constraints. Results are illustrated for a number of benchmark problems. The results presented a significant advance in robotic design automation state of the art

    Heterogeneous Self-Reconfiguring Robotics: Ph.D. Thesis Proposal

    Get PDF
    Self-reconfiguring robots are modular systems that can change shape, or reconfigure, to match structure to task. They comprise many small, discrete, often identical modules that connect together and that are minimally actuated. Global shape transformation is achieved by composing local motions. Systems with a single module type, known as homogeneous systems, gain fault tolerance, robustness and low production cost from module interchangeability. However, we are interested in heterogeneous systems, which include multiple types of modules such as those with sensors, batteries or wheels. We believe that heterogeneous systems offer the same benefits as homogeneous systems with the added ability to match not only structure to task, but also capability to task. Although significant results have been achieved in understanding homogeneous systems, research in heterogeneous systems is challenging as key algorithmic issues remain unexplored. We propose in this thesis to investigate questions in four main areas: 1) how to classify heterogeneous systems, 2) how to develop efficient heterogeneous reconfiguration algorithms with desired characteristics, 3) how to characterize the complexity of key algorithmic problems, and 4) how to apply these heterogeneous algorithms to perform useful new tasks in simulation and in the physical world. Our goal is to develop an algorithmic basis for heterogeneous systems. This has theoretical significance in that it addresses a major open problem in the field, and practical significance in providing self-reconfiguring robots with increased capabilities

    Book Review. S. G. Tzafestas: Intelligent Robotic Systems

    Get PDF

    Toward Growing Robots: A Historical Evolution from Cellular to Plant-Inspired Robotics

    Get PDF
    This paper provides the very first definition of "growing robots": a category of robots that imitates biological growth by the incremental addition of material. Although this nomenclature is quite new, the concept of morphological evolution, which is behind growth, has been extensively addressed in engineering and robotics. In fact, the idea of reproducing processes that belong to living systems has always attracted scientists and engineers. The creation of systems that adapt reliably and effectively to the environment with their morphology and control would be beneficial for many different applications, including terrestrial and space exploration or the monitoring of disasters or dangerous environments. Different approaches have been proposed over the years for solving the morphological adaptation of artificial systems, e.g., self-assembly, self-reconfigurability, evolution of virtual creatures, plant inspiration. This work reviews the main milestones in relation to growing robots, starting from the original concept of a self-replicating automaton to the achievements obtained by plant inspiration, which provided an alternative solution to the challenges of creating robots with self-building capabilities. A selection of robots representative of growth functioning is also discussed, grouped by the natural element used as model: molecule, cell, or organism growth-inspired robots. Finally, the historical evolution of growing robots is outlined together with a discussion of the future challenges toward solutions that more faithfully can represent biological growth

    Roombots-Towards Decentralized Reconfiguration with Self-Reconfiguring Modular Robotic Metamodules

    Get PDF
    This paper presents our work towards a decentralized reconfiguration strategy for self-reconfiguring modular robots, assembling furniture-like structures from Roombots metamodules. We explore how reconfiguration by locomotion from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using Roombots metamodules—two Roombots modules connected serially—that use broadcast signals, lookup tables of their movement space, assumptions about their neighborhood, and connections to a structured surface to collectively build desired structures without the need of a centralized planne

    Heterogeneous Self-Reconfiguring Robotics

    Get PDF
    Self-reconfiguring (SR) robots are modular systems that can autonomously change shape, or reconfigure, for increased versatility and adaptability in unknown environments. In this thesis, we investigate planning and control for systems of non-identical modules, known as heterogeneous SR robots. Although previous approaches rely on module homogeneity as a critical property, we show that the planning complexity of fundamental algorithmic problems in the heterogeneous case is equivalent to that of systems with identical modules. Primarily, we study the problem of how to plan shape changes while considering the placement of specific modules within the structure. We characterize this key challenge in terms of the amount of free space available to the robot and develop a series of decentralized reconfiguration planning algorithms that assume progressively more severe free space constraints and support reconfiguration among obstacles. In addition, we compose our basic planning techniques in different ways to address problems in the related task domains of positioning modules according to function, locomotion among obstacles, self-repair, and recognizing the achievement of distributed goal-states. We also describe the design of a novel simulation environment, implementation results using this simulator, and experimental results in hardware using a planar SR system called the Crystal Robot. These results encourage development of heterogeneous systems. Our algorithms enhance the versatility and adaptability of SR robots by enabling them to use functionally specialized components to match capability, in addition to shape, to the task at hand

    Locomotion through morphology, evolution and learning for legged and limbless robots

    Get PDF
    Mención Internacional en el título de doctorRobot locomotion is concerned with providing autonomous locomotion capabilities to mobile robots. Most current day robots feature some form of locomotion for navigating in their environment. Modalities of robot locomotion includes: (i) aerial locomotion, (ii) terrestrial locomotion, and (iii) aquatic locomotion (on or under water). Three main forms of terrestrial locomotion are, legged locomotion, limbless locomotion and wheel-based locomotion. A Modular Robot (MR), on the other hand, is a robotic system composed of several independent unit modules, where, each module is a robot by itself. The objective in this thesis is to develop legged locomotion in a humanoid robot, as well as, limbless locomotion in modular robotic configurations. Taking inspiration from biology, robot locomotion from the perspective of robot’s morphology, through evolution, and through learning are investigated in this thesis. Locomotion is one of the key distinguishing characteristics of a zoological organism. Almost all animal species, and even some plant species, produce some form of locomotion. In the past few years, robots have been “moving out” of the factory floor and research labs, and are becoming increasingly common in everyday life. So, providing stable and agile locomotion capabilities for robots to navigate a wide range of environments becomes pivotal. Developing locomotion in robots through biologically inspired methods, also facilitates furthering our understanding on how biological processes may function. Connected modules in a configuration, exert force on each other as a result of interaction between each other and their environment. This phenomenon is studied and quantified, and then used as implicit communication between robot modules for producing locomotion coordination in MRs. Through this, a strong link between robot morphology and the gait that emerge in it is established. A variety of locomotion controller, some periodic-function based and some morphology based, are developed for MR locomotion and bipedal gait generation. A hybrid Evolutionary Algorithm (EA) is implemented for evolving gaits, both in simulation as well as in the real-world on a physical modular robotic configuration. Limbless gaits in MRs are also learnt by learning optimal control policies, through Reinforcement Learning (RL).En robótica, la locomoción trata de proporcionar capacidades de locomoción autónoma a robots móviles. La mayoría de los robots actuales tiene alguna forma de locomoción para navegar en su entorno. Los modos de locomoción robótica se pueden repartir entre: (i) locomoción aérea, (ii) locomoción terrestre, y (iii) locomoción acuática (sobre o bajo el agua). Las tres formas básicas de locomoción terrestre son la locomoción mediante piernas, la locomoción sin miembros, y la locomoción basada en ruedas. Un Robot Modular, por otra parte, es un sistema robótico compuesto por varios módulos independientes, donde cada módulo es un robot en sí mismo. El objetivo de esta tesis es el desarrollo de la locomoción mediante piernas para un robot humanoide, así como el de la locomoción sin miembros para varias configuraciones de robots modulares. Inspirándose en la biología, también se investiga en esta tesis el desarrollo de la locomoción del robot según su morfología, gracias a técnicas de evolución y de aprendizaje. La locomoción es una de las características distintivas de un organismo zoológico. Casi todas las especies animales, e incluso algunas especies de plantas, poseen algún tipo de locomoción. En los últimos años, los robots han “migrado” desde las fábricas y los laboratorios de investigación, y se están integrando cada vez más en nuestra vida diaria. Por estas razones, es crucial proporcionar capacidades de locomoción estables y ágiles a los robots para que puedan navegar por todo tipo de entornos. El uso de métodos de inspiración biológica para alcanzar esta meta también nos ayuda a entender mejor cómo pueden funcionar los procesos biológicos equivalentes. En una configuración de módulos conectados, puesto que cada uno interacciona con su entorno, los módulos ejercen fuerza los unos sobre los otros. Este fenómeno se ha estudiado y cuantificado, y luego se ha usado como comunicación implícita entre los módulos para producir la coordinación en la locomoción de este robot. De esta manera, se establece un fuerte vínculo entre la morfología de un robot y el modo de andar que este desarrolla. Se han desarrollado varios controladores de locomoción para robots modulares y robots bípedos, algunos basados en funciones periódicas, otros en la morfología del robot. Un algoritmo evolutivo híbrido se ha implementado para la evolución de locomociones, tanto en simulación como en el mundo real en una configuración física de robot modular. También se pueden generar locomociones sin miembros para robots modulares, determinando las políticas de control óptimo gracias a técnicas de aprendizaje por refuerzo. Se presenta en primer lugar en esta tesis el estado del arte de la robótica modular, enfocándose en la locomoción de robots modulares, los controladores, la locomoción bípeda y la computación morfológica. A continuación se describen cinco configuraciones diferentes de robot modular que se utilizan en esta tesis, seguido de cuatro controladores de locomoción. Estos controladores son el controlador heterogéneo, el controlador basado en funciones periódicas, el controlador homogéneo y el controlador basado en la morfología del robot. Se desarrolla como parte de este trabajo un controlador de locomoción lineal, periódico, basado en features, para la locomoción bípeda de robots humanoides. Los parámetros de control se ajustan primero a mano para reproducir un modelo cart-table, y el controlador se evalúa en un robot humanoide simulado. A continuación, gracias a un algoritmo evolutivo, la optimización de los parámetros de control permite desarrollar una locomoción sin modelo predeterminado. Se desarrolla como parte de esta tesis un enfoque sobre algoritmos de Embodied Evolución, en otras palabras el uso de robots modulares físicos en la fase de evolución. La implementación material, la configuración experimental, y el Algoritmo Evolutivo implementado para Embodied Evolución, se explican detalladamente. El trabajo también incluye una visión general de las técnicas de aprendizaje por refuerzo y de los Procesos de Decisión de Markov. A continuación se presenta un algoritmo popular de aprendizaje por refuerzo, llamado Q-Learning, y su adaptación para aprender locomociones de robots modulares. Se proporcionan una implementación del algoritmo de aprendizaje y la evaluación experimental de la locomoción generada.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Antonio Barrientos Cruz.- Secretario: Luis Santiago Garrido Bullón.- Vocal: Giuseppe Carbon

    Estado del arte en robótica cooperativa aplicada al rescate de víctimas

    Get PDF
    The present article, in the context of a documentary research carried out and interpreted to be taken as a baseline in research for the ROMA Autonomous Mobile Robotics Group of the Francisco José de Caldas District University, describes the state of art of the applied RC to the rescue of victims. The revision is established chronologically in the last fifteen years; in Latin America; and focused mainly in Colombia. They are used as sources: The Google Schoolar database, and articles from the electronic engineering journals indexed for the year 2017 in COLCIENCIAS. As a product thrown, a particular model of communication technology used in CR is presented in the Colombian context.El presente artículo, en el contexto de una investigación documental realizada e interpretada para que fuera tomada como línea de base en investigaciones para el grupo de Robótica Móvil Autónoma ROMA de la Universidad Distrital Francisco José de Caldas, describe el estado de arte de la RC aplicada al rescate de víctimas. Se establece cronológicamente la revisión en los últimos quince años; en Latinoamérica; y enfocada principalmente en Colombia. Se utilizan como fuentes: la base de datos Google Schoolar, y artículos de las revistas de Ingeniería electrónica indexadas para el año 2017 en COLCIENCIAS. Como producto arrojado se presenta un modelo particular de la tecnología de comunicación empleada en RC en el contexto colombiano
    corecore