467 research outputs found

    Stain Consistency Learning: Handling Stain Variation for Automatic Digital Pathology Segmentation

    Full text link
    Stain variation is a unique challenge associated with automated analysis of digital pathology. Numerous methods have been developed to improve the robustness of machine learning methods to stain variation, but comparative studies have demonstrated limited benefits to performance. Moreover, methods to handle stain variation were largely developed for H&E stained data, with evaluation generally limited to classification tasks. Here we propose Stain Consistency Learning, a novel framework combining stain-specific augmentation with a stain consistency loss function to learn stain colour invariant features. We perform the first, extensive comparison of methods to handle stain variation for segmentation tasks, comparing ten methods on Masson's trichrome and H&E stained cell and nuclei datasets, respectively. We observed that stain normalisation methods resulted in equivalent or worse performance, while stain augmentation or stain adversarial methods demonstrated improved performance, with the best performance consistently achieved by our proposed approach. The code is available at: https://github.com/mlyg/stain_consistency_learnin

    Combining simulated and real images in deep learning

    Get PDF
    To train a deep learning (DL) model, considerable amounts of data are required to generalize to unseen cases successfully. Furthermore, such data is often manually labeled, making its annotation process costly and time-consuming. We propose the use of simulated data, obtained from simulators, as a way to surpass the increasing need for annotated data. Although the use of simulated environments represents an unlimited and cost-effective supply of automatically annotated data, we are still referring to synthetic information. As such, it differs in representation and distribution comparatively to real-world data. The field which addresses the problem of merging the useful features from each of these domains is called domain adaptation (DA), a branch of transfer learning. In this field, several advances have been made, from fine-tuning existing networks to sample-reconstruction approaches. Adversarial DA methods, which make use of Generative Adversarial Networks (GANs), are state-of-the-art and the most widely used. With previous approaches, training data was being sourced from already existent datasets, and the usage of simulators as a means to obtain new observations was an alternative not fully explored. We aim to survey possible DA techniques and apply them to this context of obtaining simulated data with the purpose of training DL models. Stemming from a previous project, aimed to automate quality control at the end of a vehicle's production line, a proof-of-concept will be developed. Previously, a DL model that identified vehicle parts was trained using only data obtained through a simulator. By making use of DA techniques to combine simulated and real images, a new model will be trained to be applied to the real-world more effectively. The model's performance, using both types of data, will be compared to its performance when using exclusively one of the two types. We believe this can be expanded to new areas where, until now, the usage of DL was not feasible due to the constraints imposed by data collection

    Detecting DeepFakes with Deep Learning

    Get PDF
    Advances in generative models and manipulation techniques have given rise to digitally altered videos known as deepfakes. These videos are difficult to identify for both humans and machines. Typical detection methods exploit various imperfections in deepfake videos, such as inconsistent posing and visual artifacts. In this paper, we propose a pipeline with two distinct pathways for examining individual frames and video clips. The image pathway contains a novel architecture called Eff-YNet capable of both segmenting and detecting frames from deepfake videos. It consists of a U-Net with a classification branch and an EfficientNet B4 encoder. The video pathway implements a ResNet3D model that examines short clips of deepfake videos. To test our model, we run experiments against the Deepfake Detection Challenge dataset and show improvements over baseline classification models for both Eff-YNet and the combined pathway

    AnyStar: Domain randomized universal star-convex 3D instance segmentation

    Full text link
    Star-convex shapes arise across bio-microscopy and radiology in the form of nuclei, nodules, metastases, and other units. Existing instance segmentation networks for such structures train on densely labeled instances for each dataset, which requires substantial and often impractical manual annotation effort. Further, significant reengineering or finetuning is needed when presented with new datasets and imaging modalities due to changes in contrast, shape, orientation, resolution, and density. We present AnyStar, a domain-randomized generative model that simulates synthetic training data of blob-like objects with randomized appearance, environments, and imaging physics to train general-purpose star-convex instance segmentation networks. As a result, networks trained using our generative model do not require annotated images from unseen datasets. A single network trained on our synthesized data accurately 3D segments C. elegans and P. dumerilii nuclei in fluorescence microscopy, mouse cortical nuclei in micro-CT, zebrafish brain nuclei in EM, and placental cotyledons in human fetal MRI, all without any retraining, finetuning, transfer learning, or domain adaptation. Code is available at https://github.com/neel-dey/AnyStar.Comment: Code available at https://github.com/neel-dey/AnySta

    Generation of synthetic rat brain MRI scans with a 3D enhanced alpha generative adversarial network

    Get PDF
    Translational brain research using Magnetic Resonance Imaging (MRI) is becoming increasingly popular as animal models are an essential part of scientific studies and more ultra-high-field scanners are becoming available. Some disadvantages of MRI are the availability of MRI scanners and the time required for a full scanning session. Privacy laws and the 3Rs ethics rule also make it difficult to create large datasets for training deep learning models. To overcome these challenges, an adaptation of the alpha Generative Adversarial Networks (GANs) architecture was used to test its ability to generate realistic 3D MRI scans of the rat brain in silico. As far as the authors are aware, this was the first time a GAN-based approach was used to generate synthetic MRI data of the rat brain. The generated scans were evaluated using various quantitative metrics, a Turing test, and a segmentation test. The last two tests proved the realism and applicability of the generated scans to real problems. Therefore, by using the proposed new normalisation layer and loss functions, it was possible to improve the realism of the generated rat MRI scans, and it was shown that using the generated data improved the segmentation model more than using the conventional data augmentation.FCT-ANR/NEU-OSD/0258/2012. This project was co-financed by the French public funding agency ANR (Agence Nationale pour la Recherche, APP Blanc International II 2012), the Portuguese FCT (Fundação para a Ciência e Tecnologia) and the Portuguese North Regional Operational Program (ON.2-O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), as well as the Projecto Estratégico cofunded by FCT (PEst-C/SAU/LA0026/2013) and the European Regional Development Fund COMPETE (FCOMP-01-0124-FEDER-037298). France Life Imaging is acknowledged for its support in funding the NeuroSpin platform of preclinical MRI scanners. This work of André Ferreira and Victor Alves has been supported by FCT-Fundação para a Ciência e a Tecnologia within the R&D Units Project Scope: UIDB/00319/202

    Data-centric Design and Training of Deep Neural Networks with Multiple Data Modalities for Vision-based Perception Systems

    Get PDF
    224 p.Los avances en visión artificial y aprendizaje automático han revolucionado la capacidad de construir sistemas que procesen e interpreten datos digitales, permitiéndoles imitar la percepción humana y abriendo el camino a un amplio rango de aplicaciones. En los últimos años, ambas disciplinas han logrado avances significativos,impulsadas por los progresos en las técnicas de aprendizaje profundo(deep learning). El aprendizaje profundo es una disciplina que utiliza redes neuronales profundas (DNNs, por sus siglas en inglés) para enseñar a las máquinas a reconocer patrones y hacer predicciones basadas en datos. Los sistemas de percepción basados en el aprendizaje profundo son cada vez más frecuentes en diversos campos, donde humanos y máquinas colaboran para combinar sus fortalezas.Estos campos incluyen la automoción, la industria o la medicina, donde mejorar la seguridad, apoyar el diagnóstico y automatizar tareas repetitivas son algunos de los objetivos perseguidos.Sin embargo, los datos son uno de los factores clave detrás del éxito de los algoritmos de aprendizaje profundo. La dependencia de datos limita fuertemente la creación y el éxito de nuevas DNN. La disponibilidad de datos de calidad para resolver un problema específico es esencial pero difícil de obtener, incluso impracticable,en la mayoría de los desarrollos. La inteligencia artificial centrada en datos enfatiza la importancia de usar datos de alta calidad que transmitan de manera efectiva lo que un modelo debe aprender. Motivada por los desafíos y la necesidad de los datos, esta tesis formula y valida cinco hipótesis sobre la adquisición y el impacto de los datos en el diseño y entrenamiento de las DNNs.Específicamente, investigamos y proponemos diferentes metodologías para obtener datos adecuados para entrenar DNNs en problemas con acceso limitado a fuentes de datos de gran escala. Exploramos dos posibles soluciones para la obtención de datos de entrenamiento, basadas en la generación de datos sintéticos. En primer lugar, investigamos la generación de datos sintéticos utilizando gráficos 3D y el impacto de diferentes opciones de diseño en la precisión de los DNN obtenidos. Además, proponemos una metodología para automatizar el proceso de generación de datos y producir datos anotados variados, mediante la replicación de un entorno 3D personalizado a partir de un archivo de configuración de entrada. En segundo lugar, proponemos una red neuronal generativa(GAN) que genera imágenes anotadas utilizando conjuntos de datos anotados limitados y datos sin anotaciones capturados en entornos no controlados
    corecore