353 research outputs found

    On the zone of the boundary of a convex body

    Full text link
    We consider an arrangement \A of nn hyperplanes in Rd\R^d and the zone Z\Z in \A of the boundary of an arbitrary convex set in Rd\R^d in such an arrangement. We show that, whereas the combinatorial complexity of Z\Z is known only to be OO \cite{APS}, the outer part of the zone has complexity OO (without the logarithmic factor). Whether this bound also holds for the complexity of the inner part of the zone is still an open question (even for d=2d=2)

    Covering Partial Cubes with Zones

    Full text link
    A partial cube is a graph having an isometric embedding in a hypercube. Partial cubes are characterized by a natural equivalence relation on the edges, whose classes are called zones. The number of zones determines the minimal dimension of a hypercube in which the graph can be embedded. We consider the problem of covering the vertices of a partial cube with the minimum number of zones. The problem admits several special cases, among which are the problem of covering the cells of a line arrangement with a minimum number of lines, and the problem of finding a minimum-size fibre in a bipartite poset. For several such special cases, we give upper and lower bounds on the minimum size of a covering by zones. We also consider the computational complexity of those problems, and establish some hardness results

    Solving kk-SUM using few linear queries

    Full text link
    The kk-SUM problem is given nn input real numbers to determine whether any kk of them sum to zero. The problem is of tremendous importance in the emerging field of complexity theory within PP, and it is in particular open whether it admits an algorithm of complexity O(nc)O(n^c) with c<k2c<\lceil \frac{k}{2} \rceil. Inspired by an algorithm due to Meiser (1993), we show that there exist linear decision trees and algebraic computation trees of depth O(n3log3n)O(n^3\log^3 n) solving kk-SUM. Furthermore, we show that there exists a randomized algorithm that runs in O~(nk2+8)\tilde{O}(n^{\lceil \frac{k}{2} \rceil+8}) time, and performs O(n3log3n)O(n^3\log^3 n) linear queries on the input. Thus, we show that it is possible to have an algorithm with a runtime almost identical (up to the +8+8) to the best known algorithm but for the first time also with the number of queries on the input a polynomial that is independent of kk. The O(n3log3n)O(n^3\log^3 n) bound on the number of linear queries is also a tighter bound than any known algorithm solving kk-SUM, even allowing unlimited total time outside of the queries. By simultaneously achieving few queries to the input without significantly sacrificing runtime vis-\`{a}-vis known algorithms, we deepen the understanding of this canonical problem which is a cornerstone of complexity-within-PP. We also consider a range of tradeoffs between the number of terms involved in the queries and the depth of the decision tree. In particular, we prove that there exist o(n)o(n)-linear decision trees of depth o(n4)o(n^4)

    Combinatorial complexity in o-minimal geometry

    Full text link
    In this paper we prove tight bounds on the combinatorial and topological complexity of sets defined in terms of nn definable sets belonging to some fixed definable family of sets in an o-minimal structure. This generalizes the combinatorial parts of similar bounds known in the case of semi-algebraic and semi-Pfaffian sets, and as a result vastly increases the applicability of results on combinatorial and topological complexity of arrangements studied in discrete and computational geometry. As a sample application, we extend a Ramsey-type theorem due to Alon et al., originally proved for semi-algebraic sets of fixed description complexity to this more general setting.Comment: 25 pages. Revised version. To appear in the Proc. London Math. So

    On distinct distances in homogeneous sets in the Euclidean space

    Full text link
    A homogeneous set of nn points in the dd-dimensional Euclidean space determines at least Ω(n2d/(d2+1)/logc(d)n)\Omega(n^{2d/(d^2+1)} / \log^{c(d)} n) distinct distances for a constant c(d)>0c(d)>0. In three-space, we slightly improve our general bound and show that a homogeneous set of nn points determines at least Ω(n.6091)\Omega(n^{.6091}) distinct distances

    The higher topological complexity of subcomplexes of products of spheres---and related polyhedral product spaces

    Full text link
    We construct "higher" motion planners for automated systems whose space of states are homotopy equivalent to a polyhedral product space Z(K,{(Ski,)})Z(K,\{(S^{k_i},\star)\}), e.g. robot arms with restrictions on the possible combinations of simultaneously moving nodes. Our construction is shown to be optimal by explicit cohomology calculations. The higher topological complexity of other families of polyhedral product spaces is also determined.Comment: 30 pages. This second version of the paper extends the results of the first version to the case of polyhedral product spaces Z(K,{(Ski,)})Z(K,\{(S^{k_i},\star)\}) where no restriction is assumed on the sphere dimensions $k_i

    Unbounded Regions of High-Order Voronoi Diagrams of Lines and Segments in Higher Dimensions

    Get PDF
    We study the behavior at infinity of the farthest and the higher-order Voronoi diagram of n line segments or lines in a d-dimensional Euclidean space. The unbounded parts of these diagrams can be encoded by a Gaussian map on the sphere of directions S^(d-1). We show that the combinatorial complexity of the Gaussian map for the order-k Voronoi diagram of n line segments or lines is O(min{k,n-k} n^(d-1)), which is tight for n-k = O(1). All the d-dimensional cells of the farthest Voronoi diagram are unbounded, its (d-1)-skeleton is connected, and it does not have tunnels. A d-cell of the Voronoi diagram is called a tunnel if the set of its unbounded directions, represented as points on its Gaussian map, is not connected. In a three-dimensional space, the farthest Voronoi diagram of lines has exactly n^2-n three-dimensional cells, when n >= 2. The Gaussian map of the farthest Voronoi diagram of line segments or lines can be constructed in O(n^(d-1) alpha(n)) time, while if d=3, the time drops to worst-case optimal O(n^2)
    corecore