196 research outputs found

    Recreating Early Islamic Glass Lamp Lighting

    Get PDF
    Early Islamic light sources are not simple, static, uniform points, and the fixtures themselves are often combinations of glass, water, fuel and flame. Various physically based renderers such as Radiance are widely used for modeling ancient architectural scenes; however they rarely capture the true ambiance of the environment due to subtle lighting effects. Specifically, these renderers often fail to correctly model complex caustics produced by glass fixtures, water level, and fuel sources. While the original fixtures of the 8th through 10th century Mosque of Córdoba in Spain have not survived, we have applied information gathered from earlier and contemporary sites and artifacts, including those from Byzantium, to assume that it was illuminated by either single jar lamps or supported by polycandela that cast unique downward caustic lighting patterns which helped individuals to navigate and to read. To re-synthesize such lighting, we gathered experimental archaeological data and investigated and validated how various water levels and glass fixture shapes, likely used during early Islamic times, changed the overall light patterns and downward caustics. In this paper, we propose a technique called Caustic Cones, a novel data-driven method to ‘shape’ the light emanating from the lamps to better recreate the downward lighting without resorting to computationally expensive photon mapping renderers. Additionally, we demonstrate on a rendering of the Mosque of Cordoba how our approach greatly benefits archaeologists and architectural historians by providing a more authentic visual simulation of early Islamic glass lamp lighting

    Gravitational Lensing by Spinning Black Holes in Astrophysics, and in the Movie Interstellar

    Get PDF
    Interstellar is the first Hollywood movie to attempt depicting a black hole as it would actually be seen by somebody nearby. For this we developed a code called DNGR (Double Negative Gravitational Renderer) to solve the equations for ray-bundle (light-beam) propagation through the curved spacetime of a spinning (Kerr) black hole, and to render IMAX-quality, rapidly changing images. Our ray-bundle techniques were crucial for achieving IMAX-quality smoothness without flickering. This paper has four purposes: (i) To describe DNGR for physicists and CGI practitioners . (ii) To present the equations we use, when the camera is in arbitrary motion at an arbitrary location near a Kerr black hole, for mapping light sources to camera images via elliptical ray bundles. (iii) To describe new insights, from DNGR, into gravitational lensing when the camera is near the spinning black hole, rather than far away as in almost all prior studies. (iv) To describe how the images of the black hole Gargantua and its accretion disk, in the movie \emph{Interstellar}, were generated with DNGR. There are no new astrophysical insights in this accretion-disk section of the paper, but disk novices may find it pedagogically interesting, and movie buffs may find its discussions of Interstellar interesting.Comment: 46 pages, 17 figure

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    Visually pleasing real-time global illumination rendering for fully-dynamic scenes

    Get PDF
    Global illumination (GI) rendering plays a crucial role in the photo-realistic rendering of virtual scenes. With the rapid development of graphics hardware, GI has become increasingly attractive even for real-time applications nowadays. However, the computation of physically-correct global illumination is time-consuming and cannot achieve real-time, or even interactive performance. Although the realtime GI is possible using a solution based on precomputation, such a solution cannot deal with fully-dynamic scenes. This dissertation focuses on solving these problems by introducing visually pleasing real-time global illumination rendering for fully-dynamic scenes. To this end, we develop a set of novel algorithms and techniques for rendering global illumination effects using the graphics hardware. All these algorithms not only result in real-time or interactive performance, but also generate comparable quality to the previous works in off-line rendering. First, we present a novel implicit visibility technique to circumvent expensive visibility queries in hierarchical radiosity by evaluating the visibility implicitly. Thereafter, we focus on rendering visually plausible soft shadows, which is the most important GI effect caused by the visibility determination. Based on the pre-filtering shadowmapping theory, wesuccessively propose two real-time soft shadow mapping methods: "convolution soft shadow mapping" (CSSM) and "variance soft shadow mapping" (VSSM). Furthermore, we successfully apply our CSSM method in computing the shadow effects for indirect lighting. Finally, to explore the GI rendering in participating media, we investigate a novel technique to interactively render volume caustics in the single-scattering participating media.Das Rendern globaler Beleuchtung ist für die fotorealistische Darstellung virtueller Szenen von entscheidender Bedeutung. Dank der rapiden Entwicklung der Grafik-Hardware wird die globale Beleuchtung heutzutage sogar für Echtzeitanwendungen immer attraktiver. Trotz allem ist die Berechnung physikalisch korrekter globaler Beleuchtung zeitintensiv und interaktive Laufzeiten können mit "standard Hardware" noch nicht erzielt werden. Obwohl das Rendering auf der Grundlage von Vorberechnungen in Echtzeit möglich ist, kann ein solcher Ansatz nicht auf voll-dynamische Szenen angewendet werden. Diese Dissertation zielt darauf ab, das Problem der globalen Beleuchtungsberechnung durch Einführung von neuen Techniken für voll-dynamische Szenen in Echtzeit zu lösen. Dazu stellen wir eine Reihe neuer Algorithmen vor, die die Effekte der globaler Beleuchtung auf der Grafik-Hardware berechnen. All diese Algorithmen erzielen nicht nur Echtzeit bzw. interaktive Laufzeiten sondern liefern auch eine Qualität, die mit bisherigen offline Methoden vergleichbar ist. Zunächst präsentieren wir eine neue Technik zur Berechnung impliziter Sichtbarkeit, die aufwändige Sichbarkeitstests in hierarchischen Radiosity-Datenstrukturen vermeidet. Anschliessend stellen wir eine Methode vor, die weiche Schatten, ein wichtiger Effekt für die globale Beleuchtung, in Echtzeit berechnet. Auf der Grundlage der Theorie über vorgefilterten Schattenwurf, zeigen wir nacheinander zwei Echtzeitmethoden zur Berechnung weicher Schattenwürfe: "Convolution Soft Shadow Mapping" (CSSM) und "Variance Soft Shadow Mapping" (VSSM). Darüber hinaus wenden wir unsere CSSM-Methode auch erfolgreich auf den Schatteneffekt in der indirekten Beleuchtung an. Abschliessend präsentieren wir eine neue Methode zum interaktiven Rendern von Volumen-Kaustiken in einfach streuenden, halbtransparenten Medien

    Gravitational microlensing as a diagnostic tool for stellar astrophysics

    Get PDF
    Chapter One introduces the theory of galactic microlensing and develops the necessary formulae needed to discuss extended source events in the subsequent Chapters. Some of the complications encountered by groups observing such events are discussed, as are a few of the more notable events themselves. In Chapter Two an extended source model for microlensing is presented and applied to different atmosphere models, with different surface brightness profiles including simple one and two parameter limb darkening models and the more sophisticated and recently developed "Next Generation" stellar atmosphere models. It is shown that microlensing can distinguish between these different surfaces brightness profiles and thus, the underlying stellar atmosphere models, for realistic observational strategies. In Chapter Three a second stellar atmosphere models is introduced. This model includes the effects of a non-radial surface brightness profile, i.e. starspots. Such effects are interesting for several reasons. Firstly, the existence or otherwise of starspots is an important indicator of stellar surface activity and would provide valuable information for the testing and development of more sophisticated stellar atmosphere models. Additionally, there has been concern that starspots could mimic planetary microlensing lightcurves making it important to consider how their observational signatures could be distinguished from those of planets. The microlensing signatures of starspots are considered for point mass lens in Chapter Three and for fold caustic crossings in Chapter Four. In Chapter Five the extended source model used previously is applied to a source model with a small level of radial and temperature variability, to allow examination of how such events, if observed, would compare to standard microlensing events. In Chapter Six an investigation is made of the spectroscopic signatures of microlensing from circumstellar envelopes and the opportunities of using microlensing to diagnose bulk motion in these envelopes during caustic crossing events is examined

    Analyse de l'espace des chemins pour la composition des ombres et lumières

    Get PDF
    La réalisation des films d'animation 3D s'appuie de nos jours sur les techniques de rendu physiquement réaliste, qui simulent la propagation de la lumière dans chaque scène. Dans ce contexte, les graphistes 3D doivent jouer avec les effets de lumière pour accompagner la mise en scène, dérouler la narration du film, et transmettre son contenu émotionnel aux spectateurs. Cependant, les équations qui modélisent le comportement de la lumière laissent peu de place à l'expression artistique. De plus, l'édition de l'éclairage par essai-erreur est ralentie par les longs temps de rendu associés aux méthodes physiquement réalistes, ce qui rend fastidieux le travail des graphistes. Pour pallier ce problème, les studios d'animation ont souvent recours à la composition, où les graphistes retravaillent l'image en associant plusieurs calques issus du processus de rendu. Ces calques peuvent contenir des informations géométriques sur la scène, ou bien isoler un effet lumineux intéressant. L'avantage de la composition est de permettre une interaction en temps réel, basée sur les méthodes classiques d'édition en espace image. Notre contribution principale est la définition d'un nouveau type de calque pour la composition, le calque d'ombre. Un calque d'ombre contient la quantité d'énergie perdue dans la scène à cause du blocage des rayons lumineux par un objet choisi. Comparée aux outils existants, notre approche présente plusieurs avantages pour l'édition. D'abord, sa signification physique est simple à concevoir : lorsque l'on ajoute le calque d'ombre et l'image originale, toute ombre due à l'objet choisi disparaît. En comparaison, un masque d'ombre classique représente la fraction de rayons bloqués en chaque pixel, une information en valeurs de gris qui ne peut servir que d'approximation pour guider la composition. Ensuite, le calque d'ombre est compatible avec l'éclairage global : il enregistre l'énergie perdue depuis les sources secondaires, réfléchies au moins une fois dans la scène, là où les méthodes actuelles ne considèrent que les sources primaires. Enfin, nous démontrons l'existence d'une surestimation de l'éclairage dans trois logiciels de rendu différents lorsque le graphiste désactive les ombres pour un objet ; notre définition corrige ce défaut. Nous présentons un prototype d'implémentation des calques d'ombres à partir de quelques modifications du Path Tracing, l'algorithme de choix en production. Il exporte l'image originale et un nombre arbitraire de calques d'ombres liés à différents objets en une passe de rendu, requérant un temps supplémentaire de l'ordre de 15% dans des scènes à géométrie complexe et contenant plusieurs milieux participants. Des paramètres optionnels sont aussi proposés au graphiste pour affiner le rendu des calques d'ombres.The production of 3D animated motion picture now relies on physically realistic rendering techniques, that simulate light propagation within each scene. In this context, 3D artists must leverage lighting effects to support staging, deploy the film's narrative, and convey its emotional content to viewers. However, the equations that model the behavior of light leave little room for artistic expression. In addition, editing illumination by trial-and-error is tedious due to the long render times that physically realistic rendering requires. To remedy these problems, most animation studios resort to compositing, where artists rework a frame by associating multiple layers exported during rendering. These layers can contain geometric information on the scene, or isolate a particular lighting effect. The advantage of compositing is that interactions take place in real time, and are based on conventional image space operations. Our main contribution is the definition of a new type of layer for compositing, the shadow layer. A shadow layer contains the amount of energy lost in the scene due to the occlusion of light rays by a given object. Compared to existing tools, our approach presents several advantages for artistic editing. First, its physical meaning is straightforward: when a shadow layer is added to the original image, any shadow created by the chosen object disappears. In comparison, a traditional shadow matte represents the ratio of occluded rays at a pixel, a grayscale information that can only serve as an approximation to guide compositing operations. Second, shadow layers are compatible with global illumination: they pick up energy lost from secondary light sources that are scattered at least once in the scene, whereas the current methods only consider primary sources. Finally, we prove the existence of an overestimation of illumination in three different renderers when an artist disables the shadow of an object; our definition fixes this shortcoming. We present a prototype implementation for shadow layers obtained from a few modifications of path tracing, the main rendering algorithm in production. It exports the original image and any number of shadow layers associated with different objects in a single rendering pass, with an additional 15% time in scenes containing complex geometry and multiple participating media. Optional parameters are also proposed to the artist to fine-tune the rendering of shadow layers

    Artistic Path Space Editing of Physically Based Light Transport

    Get PDF
    Die Erzeugung realistischer Bilder ist ein wichtiges Ziel der Computergrafik, mit Anwendungen u.a. in der Spielfilmindustrie, Architektur und Medizin. Die physikalisch basierte Bildsynthese, welche in letzter Zeit anwendungsübergreifend weiten Anklang findet, bedient sich der numerischen Simulation des Lichttransports entlang durch die geometrische Optik vorgegebener Ausbreitungspfade; ein Modell, welches für übliche Szenen ausreicht, Photorealismus zu erzielen. Insgesamt gesehen ist heute das computergestützte Verfassen von Bildern und Animationen mit wohlgestalteter und theoretisch fundierter Schattierung stark vereinfacht. Allerdings ist bei der praktischen Umsetzung auch die Rücksichtnahme auf Details wie die Struktur des Ausgabegeräts wichtig und z.B. das Teilproblem der effizienten physikalisch basierten Bildsynthese in partizipierenden Medien ist noch weit davon entfernt, als gelöst zu gelten. Weiterhin ist die Bildsynthese als Teil eines weiteren Kontextes zu sehen: der effektiven Kommunikation von Ideen und Informationen. Seien es nun Form und Funktion eines Gebäudes, die medizinische Visualisierung einer Computertomografie oder aber die Stimmung einer Filmsequenz -- Botschaften in Form digitaler Bilder sind heutzutage omnipräsent. Leider hat die Verbreitung der -- auf Simulation ausgelegten -- Methodik der physikalisch basierten Bildsynthese generell zu einem Verlust intuitiver, feingestalteter und lokaler künstlerischer Kontrolle des finalen Bildinhalts geführt, welche in vorherigen, weniger strikten Paradigmen vorhanden war. Die Beiträge dieser Dissertation decken unterschiedliche Aspekte der Bildsynthese ab. Dies sind zunächst einmal die grundlegende Subpixel-Bildsynthese sowie effiziente Bildsyntheseverfahren für partizipierende Medien. Im Mittelpunkt der Arbeit stehen jedoch Ansätze zum effektiven visuellen Verständnis der Lichtausbreitung, die eine lokale künstlerische Einflussnahme ermöglichen und gleichzeitig auf globaler Ebene konsistente und glaubwürdige Ergebnisse erzielen. Hierbei ist die Kernidee, Visualisierung und Bearbeitung des Lichts direkt im alle möglichen Lichtpfade einschließenden "Pfadraum" durchzuführen. Dies steht im Gegensatz zu Verfahren nach Stand der Forschung, die entweder im Bildraum arbeiten oder auf bestimmte, isolierte Beleuchtungseffekte wie perfekte Spiegelungen, Schatten oder Kaustiken zugeschnitten sind. Die Erprobung der vorgestellten Verfahren hat gezeigt, dass mit ihnen real existierende Probleme der Bilderzeugung für Filmproduktionen gelöst werden können
    corecore