9,004 research outputs found

    Von Bezold assimilation effect reverses in stereoscopic conditions

    Get PDF
    Lightness contrast and lightness assimilation are opposite phenomena: in contrast, grey targets appear darker when bordering bright surfaces (inducers) rather than dark ones; in assimilation, the opposite occurs. The question is: which visual process favours the occurrence of one phenomenon over the other? Researchers provided three answers to this question. The first asserts that both phenomena are caused by peripheral processes; the second attributes their occurrence to central processes; and the third claims that contrast involves central processes, whilst assimilation involves peripheral ones. To test these hypotheses, an experiment on an IT system equipped with goggles for stereo vision was run. Observers were asked to evaluate the lightness of a grey target, and two variables were systematically manipulated: (i) the apparent distance of the inducers; and (ii) brightness of the inducers. The retinal stimulation was kept constant throughout, so that the peripheral processes remained the same. The results show that the lightness of the target depends on both variables. As the retinal stimulation was kept constant, we conclude that central mechanisms are involved in both lightness contrast and lightness assimilation

    Von Bezold assimilation effect reverses in stereoscopic conditions

    Get PDF
    Lightness contrast and lightness assimilation are opposite phenomena: in contrast, grey targets appear darker when bordering bright surfaces (inducers) rather than dark ones; in assimilation, the opposite occurs. The question is: which visual process favours the occurrence of one phenomenon over the other? Researchers provided three answers to this question. The first asserts that both phenomena are caused by peripheral processes; the second attributes their occurrence to central processes; and the third claims that contrast involves central processes, whilst assimilation involves peripheral ones. To test these hypotheses, an experiment on an IT system equipped with goggles for stereo vision was run. Observers were asked to evaluate the lightness of a grey target, and two variables were systematically manipulated: (i) the apparent distance of the inducers; and (ii) brightness of the inducers. The retinal stimulation was kept constant throughout, so that the peripheral processes remained the same. The results show that the lightness of the target depends on both variables. As the retinal stimulation was kept constant, we conclude that central mechanisms are involved in both lightness contrast and lightness assimilation

    Phenomenal regression to the real object in physical and virtual worlds

    Get PDF
    © 2014, Springer-Verlag London. In this paper, we investigate a new approach to comparing physical and virtual size and depth percepts that captures the involuntary responses of participants to different stimuli in their field of view, rather than relying on their skill at judging size, reaching or directed walking. We show, via an effect first observed in the 1930s, that participants asked to equate the perspective projections of disc objects at different distances make a systematic error that is both individual in its extent and comparable in the particular physical and virtual setting we have tested. Prior work has shown that this systematic error is difficult to correct, even when participants are knowledgeable of its likelihood of occurring. In fact, in the real world, the error only reduces as the available cues to depth are artificially reduced. This makes the effect we describe a potentially powerful, intrinsic measure of VE quality that ultimately may contribute to our understanding of VE depth compression phenomena

    Stereo TV enhancement study Final technical report

    Get PDF
    Human depth perception of television displays in stereo, and nonstereo presentation

    Perceptual factors that influence use of computer enhanced visual displays

    Get PDF
    This document is the final report for the NASA/Langley contract entitled 'Perceptual Factors that Influence Use of Computer Enhanced Visual Displays.' The document consists of two parts. The first part contains a discussion of the problem to which the grant was addressed, a brief discussion of work performed under the grant, and several issues suggested for follow-on work. The second part, presented as Appendix I, contains the annual report produced by Dr. Ann Fulop, the Postdoctoral Research Associate who worked on-site in this project. The main focus of this project was to investigate perceptual factors that might affect a pilot's ability to use computer generated information that is projected into the same visual space that contains information about real world objects. For example, computer generated visual information can identify the type of an attacking aircraft, or its likely trajectory. Such computer generated information must not be so bright that it adversely affects a pilot's ability to perceive other potential threats in the same volume of space. Or, perceptual attributes of computer generated and real display components should not contradict each other in ways that lead to problems of accommodation and, thus, distance judgments. The purpose of the research carried out under this contract was to begin to explore the perceptual factors that contribute to effective use of these displays
    corecore