201,407 research outputs found

    An information assistant system for the prevention of tunnel vision in crisis management

    Get PDF
    In the crisis management environment, tunnel vision is a set of bias in decision makers’ cognitive process which often leads to incorrect understanding of the real crisis situation, biased perception of information, and improper decisions. The tunnel vision phenomenon is a consequence of both the challenges in the task and the natural limitation in a human being’s cognitive process. An information assistant system is proposed with the purpose of preventing tunnel vision. The system serves as a platform for monitoring the on-going crisis event. All information goes through the system before arrives at the user. The system enhances the data quality, reduces the data quantity and presents the crisis information in a manner that prevents or repairs the user’s cognitive overload. While working with such a system, the users (crisis managers) are expected to be more likely to stay aware of the actual situation, stay open minded to possibilities, and make proper decisions

    CausaLM: Causal Model Explanation Through Counterfactual Language Models

    Full text link
    Understanding predictions made by deep neural networks is notoriously difficult, but also crucial to their dissemination. As all ML-based methods, they are as good as their training data, and can also capture unwanted biases. While there are tools that can help understand whether such biases exist, they do not distinguish between correlation and causation, and might be ill-suited for text-based models and for reasoning about high level language concepts. A key problem of estimating the causal effect of a concept of interest on a given model is that this estimation requires the generation of counterfactual examples, which is challenging with existing generation technology. To bridge that gap, we propose CausaLM, a framework for producing causal model explanations using counterfactual language representation models. Our approach is based on fine-tuning of deep contextualized embedding models with auxiliary adversarial tasks derived from the causal graph of the problem. Concretely, we show that by carefully choosing auxiliary adversarial pre-training tasks, language representation models such as BERT can effectively learn a counterfactual representation for a given concept of interest, and be used to estimate its true causal effect on model performance. A byproduct of our method is a language representation model that is unaffected by the tested concept, which can be useful in mitigating unwanted bias ingrained in the data.Comment: Our code and data are available at: https://amirfeder.github.io/CausaLM/ Under review for the Computational Linguistics journa

    EEMCS final report for the causal modeling for air transport safety (CATS) project

    Get PDF
    This document reports on the work realized by the DIAM in relation to the completion of the CATS model as presented in Figure 1.6 and tries to explain some of the steps taken for its completion. The project spans over a period of time of three years. Intermediate reports have been presented throughout the project’s progress. These are presented in Appendix 1. In this report the continuous‐discrete distribution‐free BBNs are briefly discussed. The human reliability models developed for dealing with dependence in the model variables are described and the software application UniNet is presente

    A self-validating control system based approach to plant fault detection and diagnosis

    Get PDF
    An approach is proposed in which fault detection and diagnosis (FDD) tasks are distributed to separate FDD modules associated with each control system located throughout a plant. Intended specifically for those control systems that inherently eliminate steady state error, it is modular, steady state based, requires very little process specific information and therefore should be attractive to control systems implementers who seek economies of scale. The approach is applicable to virtually all types of process plant, whether they are open loop stable or not, have a type or class number of zero or not and so on. Based on qualitative reasoning, the approach is founded on the application of control systems theory to single and cascade control systems with integral action. This results in the derivation of cause-effect knowledge and fault isolation procedures that take into account factors like interactions between control systems, and the availability of non-control-loop-based sensors

    Optimizing compilation with preservation of structural code coverage metrics to support software testing

    Get PDF
    Code-coverage-based testing is a widely-used testing strategy with the aim of providing a meaningful decision criterion for the adequacy of a test suite. Code-coverage-based testing is also mandated for the development of safety-critical applications; for example, the DO178b document requires the application of the modified condition/decision coverage. One critical issue of code-coverage testing is that structural code coverage criteria are typically applied to source code whereas the generated machine code may result in a different code structure because of code optimizations performed by a compiler. In this work, we present the automatic calculation of coverage profiles describing which structural code-coverage criteria are preserved by which code optimization, independently of the concrete test suite. These coverage profiles allow to easily extend compilers with the feature of preserving any given code-coverage criteria by enabling only those code optimizations that preserve it. Furthermore, we describe the integration of these coverage profile into the compiler GCC. With these coverage profiles, we answer the question of how much code optimization is possible without compromising the error-detection likelihood of a given test suite. Experimental results conclude that the performance cost to achieve preservation of structural code coverage in GCC is rather low.Peer reviewedSubmitted Versio

    An automated model-based test oracle for access control systems

    Full text link
    In the context of XACML-based access control systems, an intensive testing activity is among the most adopted means to assure that sensible information or resources are correctly accessed. Unfortunately, it requires a huge effort for manual inspection of results: thus automated verdict derivation is a key aspect for improving the cost-effectiveness of testing. To this purpose, we introduce XACMET, a novel approach for automated model-based oracle definition. XACMET defines a typed graph, called the XAC-Graph, that models the XACML policy evaluation. The expected verdict of a specific request execution can thus be automatically derived by executing the corresponding path in such graph. Our validation of the XACMET prototype implementation confirms the effectiveness of the proposed approach.Comment: 7 page
    corecore